
Guidance for
Standards Developers

7

K-12 Computer Science Framework 125

Guidance for Standards Developers

The K–12 Computer Science Framework is designed to serve as a foundation from which all states,
districts, and organizations can develop computer science education standards for K–12 students.
Standards play a vital role in achieving the vision of computer science for all students. They
democratize computer science by setting learning goals for all students and the expectation that
all schools will provide opportunities to achieve those goals so that all children, regardless of their
age, race, gender, disability, socioeconomic level, or what school they attend, will be able to have
engaging and rigorous computer science experiences. As illustrated in Figure 7.1, the framework
provides the building blocks by which states can develop their own standards.

Figure 7.1: Building blocks for standards

F R A M E WO R K : K N O W, D O S TA N DA R D S : K N O W A N D D O

Know

Know

Know
Know

Do

Do

Do

Do

126 K–12 Computer Science Framework

Guidance for Standards Developers

Standards are an essential component of a larger education plan and can provide a foundation with
which to align the other components, such as curriculum, instruction, professional development,
and assessment, to better prepare students for success in college and the workplace. They also
communicate core learning goals to policymakers, administrators, teachers, parents, and students.
Computer science standards provide insight into a discipline that will be new to many teachers and
offer inspirational starting points to create projects, lessons, and activities. Standards facilitate the
sharing of content, such as lessons, among teachers and are a useful way to categorize that content
for easy search and retrieval. Consistent standards promote alignment and connections among
different districts within a state so that if a student moves to a different school, he or she will not end
up with different expectations.

The purpose of this guide is to provide information and recommendations for the development of
K–12 computer science education standards

• at the beginning to set the criteria and prepare standards writers,
• during the writing process with examples and exercises, and
• afterward to help evaluate the outcome.

This guide was developed in partnership with the nonprofit education organization Achieve based on
recommendations for standards developers from the National Research Council (NRC, 2012). It also
uses criteria and procedures Achieve has established and refined based on aspects of quality
academic content standards.

These categories are described in Table 7.1.

Table 7.1: Guidance for Standards Developers summary

C R I T E R I A S U M M A R Y

Rigor:
What is the intellectual demand
of the standards?

Rigor is the quintessential hallmark of exemplary standards. It is the measure of
how closely a set of standards represents the content and cognitive demand
necessary for students to succeed in credit-bearing college courses without
remediation and in entry-level, high-quality, high-growth jobs. We recommend
that standards writers establish and articulate the appropriate level of rigor in
computer science to prepare all students for success in college and careers.

Focus/Manageability:
Have choices been made about
what is most important for
students to learn and what is a
manageable amount of
content?

High-quality standards establish priorities about the concepts and skills that
should be acquired by graduation from high school. Choices should be based on
the knowledge and skills essential for students to succeed in postsecondary
education and the world of work. A sharpened focus also helps ensure that the
cumulative knowledge and skills students are expected to learn is manageable.
We recommend grade-level standards that clearly communicate student expecta-
tions at each stage. In the case of grade-banded standards, we recommend that
guidance be provided for users in creating their own grade-level standards or
mapping standards to specific courses.

Table continues on next page

K–12 Computer Science Framework 127

Guidance for Standards Developers

Specificity:
Are the standards specific
enough to convey the level of
performance expected of
students?

High-quality standards are precise and provide sufficient detail to convey the level
of performance expected without being overly prescriptive. Standards that
maintain a relatively consistent level of precision (“grain size”) are easier to
understand and use. Those that are overly broad or vague leave too much open
to interpretation, increasing the likelihood that students will be held to different
levels of performance, while standards that are too prescriptive encourage a
checklist approach to teaching and learning that undermines students’ opportuni-
ties to demonstrate their understanding in equitable ways. We recommend that
standards developers write standards that are neither too broad nor too specific
and that the grain size is consistent across the standards.

Equity/Diversity:
Were the standards written for
all students by a diverse set of
writers and reviewers? Are
students able to demonstrate
performance in multiple ways?

Standards, just like other aspects of education infrastructure, play a role in creating
an equitable environment for all students. We recommend that diversity and
equity be attended to not only in the makeup of the groups writing, advising, and
reviewing the standards but also in the standards content by designing standards
that can be engaged in by ALL students and are flexible enough to allow them to
demonstrate proficiency in multiple ways.

Clarity/Accessibility:
Are the standards clearly
written and presented in an
error-free, legible, easy-to-use
format that is accessible to the
general public?

Clarity requires more than just plain and jargon-free prose that is free of errors.
Standards also must be communicated in language that can gain widespread
acceptance not only by postsecondary faculty but also by employers, teachers,
parents, school boards, legislators, and others who have a stake in schooling. A
straightforward, functional format facilitates user access. We recommend that
standards writers consider the knowledge level of users of the standards by
clarifying terms and providing examples.

Coherence/Progression:
Do the standards convey a
unified vision of the discipline,
do they establish connections
among the major areas of
study, and do they show a
meaningful progression of
content across the grades?

The way in which standards are categorized and broken out into supporting
strands should reflect a coherent structure of the discipline and/or reveal signifi-
cant relationships among the strands and how the study of one complements the
study of another. If standards suggest a progression, that progression should be
meaningful and appropriate across the grades or grade spans. We recommend
that standards writers clearly communicate progressions of content and practices
in the standards.

Measurability:
Is each standard measurable,
observable, or verifiable in
some way?

In general, standards should focus on the results, rather than the processes of
teaching and learning. Standards should make use of performance verbs that call
for students to demonstrate knowledge and skills and should avoid using those
that refer to learning activities, such as examine, investigate, and explore, or to
cognitive processes that are hard to verify, such as appreciate. We recommend
ensuring that each standard is measurable.

Integration of Practices
and Concepts:
Does each standard reflect at
least one practice and one
concept?

To ensure that instruction reflects both knowing and doing computer science, the
core concepts of computer science should be taught alongside the practices by
fully integrating them at the standards level. We recommend that standards
integrate the computer science practices with the concept statements.

Connections to
Other Disciplines:
Are there explicit ways in which
computer science is shown to
be relevant in other subjects?

There are many possible areas of overlap between computer science and subject
areas such as math, science, and engineering as well as humanities, including
languages, social studies, art, and music. Making intentional connections between
computer science standards and academic standards in other disciplines will
promote a more coherent education experience. We recommend that computer
science standards be written to align with and connect to (possibly via clarifying
examples) state math and science standards, as well as standards from other
disciplines.

Table continued from previous page

128 K–12 Computer Science Framework

Guidance for Standards Developers

Recommendations
Recommendation 1: Rigor. We recommend that standards establish and articulate
the appropriate level of rigor in computer science to prepare all students for success
in college and careers.

High-quality standards create foundational expectations for all students, rather than just those
interested in advanced study, and prepare students for a variety of postsecondary experiences.

Standards aim to prepare students for the demands of the world they will encounter after graduation.
That preparation is even more difficult when the job market changes rapidly as the influence of technol-
ogy in the workforce grows steadily. It is therefore critical that standards describe rigorous expectations
in computer science for all students. In addition, some students will want to specialize in computer
science fields and require an even higher level of intellectual demand than is necessary for all students.

To facilitate appropriate use of the standards, differentiating between technical career standards
for advanced courses and core academic standards for all students is crucial. The former may be
equivalent to the expectations for specialized computer science courses—in particular, career and
technical education pathways. In contrast, standards for all students describe expectations that will be
important for every student to meet to help ensure their future success in any chosen field.

For example, the different standards in Figure 7.2 are based on the same practice and concept in the
9–12 grade band of the K–12 Computer Science Framework, and they compare a standard for an
advanced course with a standard for all students.

Figure 7.2: Differentiating rigor for all students

Practice: Testing and Refining
Computational Artifacts

Concept: Systematic analysis is critical for identifying
the effects of lingering bugs. (9–12.Algorithms and
Programming.Program Development)

Example 1: Test and refine software components by using unit tests to identify lingering bugs
during an agile programming development cycle.

Example 2: Test and refine a program using a systematic debugging process as part of a larger
iterative development process.

The first standard would be more appropriate for high school students in a specialized career and
technical education course, as it calls for a product (software components) and methodologies (unit
tests and agile development) that are specific to the software industry. The second standard sets a
goal for all students that reflects a more general product (any computer program) yet still maintains
rigor through the expectation of a systematic and iterative process.

K–12 Computer Science Framework 129

Guidance for Standards Developers

Standards meant for all students should have sufficient rigor to help prepare students to enter and
succeed in entry-level postsecondary courses that require skills such as critical thinking, problem
solving, and computational literacy. Rigor applies equally to practices and concepts.

The K–12 Computer Science Framework was
written to describe a vision of computer science
education for all students, so most standards
based on the framework could be written at a level
of rigor intended for all students, rather than for
students in advanced courses. Care should be taken
to align the standards with grade-appropriate student
abilities. It is possible that feedback or current system
constraints could influence standards writers to try to
limit the rigor of the standards, particularly at the
elementary grade levels. However, research into
students’ use of sequence and iteration and practice
of other aspects of computational thinking indicates
that students can learn computer science at young
ages (Flannery et al., 2013) when they have the
support and opportunities to do so. Standards writers
should be careful to keep rigor at a high enough level
for younger students to ensure that all students have
access to high-quality computer science education.
The concept statements in the K–2 and 3–5 grade
bands of the framework have been reviewed by early
childhood computer science education experts and
provide a blueprint for the appropriate expectations
for elementary-age students. See Figure 7.3 for
criteria to determine if a standard has the right
amount of rigor.

Computer Science Applies
to Many College Majors
and Careers

Business:
Business professionals can apply

processes learned in computer

science to expand a business and

optimize for efficiency.

Music:
Musicians can design sounds,

effects, and filters. They can create a

system to control music using

gestures to manipulate sounds and

visuals for a live show.

Biology:
Researchers can analyze a database

of genetic sequences for genes

similar to a known cancer gene.

Sports:
Coaches can create algorithms

to analyze the performance of

athletes as a training tool or

develop strategies using real-time

data on the field.

130 K–12 Computer Science Framework

Guidance for Standards Developers

Figure 7.3: Determining the right amount of rigor for a standard

A standard should meet all three of these criteria:

• Does the standard require an appropriate level of conceptual understanding?
• Does it require application of that concept?
• Does it require engagement with a practice?

To help ensure that standards set expectations that prepare students for success in entry-level
postsecondary courses and careers, feedback from employers and faculty members, including
from two-year institutions, is crucial. The involvement of reviewers with a perspective on student
preparation for postsecondary courses and careers will provide valuable information about the rigor
necessary in the standards.

Recommendation 2: Focus/Manageability. We recommend that standards be limited
in number, focus on the content and practices described in the framework, and be
written for individual grade levels or courses.

High-quality standards prioritize the concepts and skills that should be acquired by students. A
sharpened focus helps ensure that the knowledge and skills students are expected to learn are
important and manageable in any given grade or course.

A clear focus within standards helps teachers see and prioritize learning experiences for students.
Therefore the framework was developed to describe a core set of concepts and practices, which were
selected using criteria developed by the writing team and vetted by the computer science community
during review periods. Standards based on the framework should focus on the set of concepts and
practices described here, rather than incorporating additional topics that could be included in
advanced computer science courses.1 See Table 7.2 for examples of important topics that are essen-
tial or not essential for all students to learn.

1 Additional topics would be appropriate for standards for advanced courses, if they are clearly designated as such and not as standards for all students
(see Recommendation 1).

K–12 Computer Science Framework 131

Guidance for Standards Developers

Table 7.2: Examples of essential and non-essential topics

I M P O R TA N T A N D E S S E N T I A L F O R
A L L S T U D E N T S

I M P O R TA N T B U T N O T E S S E N T I A L
F O R A L L S T U D E N T S

• Troubleshooting strategies

• Searching and sorting

• Digital data representations

• Basic online security measures

• Operating systems

• Algorithmic efficiency

• Relational databases

• Cryptography methods

This focus will help ensure that the limited time available for computer science education throughout K–12
is concentrated on those areas that are priorities for all students. Additional standards could be added for
elective computer science courses, but those should be noted as elective and not for all students. Figure
7.4 provides an example of a standard appropriately focused on the concept.

Figure 7.4: Focusing on the concept

Practice: Recognizing and Defining Computational Problems
Concept: Different software tools used to access data may store the data differently. The type of
data being stored and the level of detail represented by that data affect the storage requirements.
(3–5.Data and Analysis.Storage)

Standard that focuses on the concept: Evaluate the appropriateness of different ways to store data
based on the type of data and the level of detail.

Standard that includes extraneous concepts: Evaluate the appropriateness of binary, octal, and
hexadecimal representations of data and convert between bits and bytes.

Another aspect of appropriate focus is that standards are developed for either specific grade levels or
courses. Although the framework’s statements are written for grade bands (i.e., K–2, 3–5, 6–8, 9–12)
and more accurately, grade-band endpoints, standards developed from the framework should be
written for individual grade levels. For example, the framework’s expectations by the end of 5th grade
(Grades 3–5) may inform standards in all three grade levels—Grades 3, 4, and 5—or in Grade 5 only.
If grade level standards are not possible, guidance should be provided about how users of the
standards can create their own grade level or course-specific student expectations. Narrowing the
focus of student goals at each grade level or course—either by standards writers or by district and
state administrators—will enable alignment across the education system and help ensure that
teachers have the support they need to focus on particular standards during a course or grade level.

132 K–12 Computer Science Framework

Guidance for Standards Developers

Recommendation 3: Specificity. We recommend that standards writers attend to the
specificity of the standards to ensure that they are neither too broad nor too specific
and that the grain size, when possible, is consistent across the standards.

High-quality standards are precise and provide sufficient detail to convey the level of performance
expected without being overly prescriptive. Those that maintain a relatively consistent level of
precision tend to have consistent interpretation and use. Conversely, those that are overly broad or
vague leave too much open to interpretation and are implemented inconsistently, and overly specific
standards reduce students’ opportunities to demonstrate their understanding in flexible ways.

Writing standards to a useful level of specificity requires a balance between being too vague and too
specific (see Figure 7.5). A consistent and appropriate level of specificity will help ensure that teachers
have the understanding and support they need to help students reach the standards. When standards
are too broad, a teacher must interpret the intent of the standards—to decide what types of connections
are to be understood and what depth of complexities of problems are to be solved. Useful specificity
can often be added with boundary statements, which specify what content is not expected, clarifying
the scope of material to be taught. For example, students by the end of eighth grade should know that
network protocols exist to allow different computers to communicate with one another but not the
structure of messages sent using a specific protocol, such as HTTP (Hypertext Transfer Protocol).

Figure 7.5: A spectrum of specificity in standards

Standard Comments

Too vague Use conditionals in a program. This standard lacks context and is too
vague to be assessed.

Balanced Design an algorithm that efficiently
uses conditional statements to repre-
sent multiple branches of execution.

This standard specifies the type of
product and a level of rigor yet allows
for multiple contexts in which to
demonstrate performance.

Too specific Create an app to help friends decide
between watching a comedy, action,
or science fiction movie by using three
if-statements.

The context for this standard is too
specific and does not allow for a range
of demonstrations of performance.

Consistency in the level of specificity across the standards is also important (see Figure 7.6). In prac-
tice, standards within the same document may be interpreted to have equal levels of specificity and
may thus be allotted equal amounts of instructional time. It is more difficult for educators, curriculum
designers, and assessment developers to use standards that vary in scope across grade levels.

K–12 Computer Science Framework 133

Guidance for Standards Developers

Figure 7.6: Calibrating specificity across standards writers

Create a set of three to five standards that vary in specificity and have different
standards writers (as small groups or individuals) put them in order and compare.
Discuss the differences and characteristics of each standard, then select the one or two
examples of specificity that the group should be aiming for when writing standards.

Recommendation 4: Equity/Diversity. We recommend that diversity and equity
be attended to by developing standards that allow for engagement by ALL
students and allow for flexibility in how students may demonstrate proficiency.
The makeup of the groups of stakeholders writing and reviewing the standards
should be diverse.

The framework is based on the belief that all students, regardless of race, gender, socioeconomic
class, or disability, when given appropriate support, can learn all of the concepts and practices
described in the framework.

Equitable standards create expectations for students with a variety of college and career interests,
allow for flexible demonstrations of performance, do not assume out-of-school preparation, and are
written by stakeholders with diverse perspectives.

Standards that are created for all students focus on the core aspects of computer science that are
applicable to a wide range of college and career choices, rather than extraneous content with narrow
application. The concepts and practices of the K–12 Computer Science Framework represent literacy
in computer science for all students, not just students interested in majoring in the field or pursuing
technical careers.

If computer science education is expected of all students, it must also be equitable and allow students
to demonstrate their knowledge and skill in multiple ways. When a standard is particularly prescriptive,
such as when it resembles the scope (“grain size”) of an assessment item, it prescribes a particular way
that students should demonstrate their understanding, creating the potential for an inequitable
classroom environment. Equitable standards are not biased for or against students from a particular
background. This includes making standards accessible to students with special needs or English
language learners.

134 K–12 Computer Science Framework

Guidance for Standards Developers

Equitable standards do not presuppose content knowledge, and therefore a level of preparation, in
computer science but instead include all key stages in a learning progression. Incomplete learning
progressions require out-of-school opportunities to fill in gaps in knowledge, putting students without
these experiences at a disadvantage.

Developing equitable standards requires diverse stakeholders. The writers and reviewers involved in
developing the standards should include diverse representation from two- and four-year institutions;
the research community; industry; and most important, K–12 education, including expertise in early
childhood, English language learners, and students with disabilities. This diversity will help ensure that
different perspectives and areas of expertise are involved in each standard’s development decision
and that writers and reviewers can review each statement and example for possible bias. For example,
creating standards that require specific equipment or software that is not readily accessible will
disadvantage certain groups, such as rural or poor communities.

Recommendation 5: Clarity/Accessibility. We recommend that standards writers
clarify standards for the average user of the standards, including defining terms and
providing examples.

High-quality standards are clearly written and presented in an error-free, legible, easy-to-use format
that is accessible to both the targeted instructors and the general public.

Writing clear and accessible standards is challenging. As content experts, writers may tend to drift into
technical language. Additionally, computer scientists may use terms in different ways than many of the
users of the standards. Precision in meaning is important but so is an awareness of the audience that
will be reading and implementing the standards. In all cases, standards writers must attend to the
technical understanding of the user as well as the actual content of the standard.

K–12 Computer Science Framework 135

Guidance for Standards Developers

Computer science standards writers should consider the potential technical understanding of the
average user, given the current scenarios in which computer science is taught. Rather than decreasing
rigor, writers should consider how to frame standards language so that it is accessible to educators
who are teaching computer science outside of their primary area of certification and may not have a
computer science background. In most elementary schools, teachers are generalists, with no special
training in computer science. Policymakers and community members also need to understand the
educational priorities communicated by the standards. It is therefore critical for computer science
standards to be accessible to many different audiences.

Precise use of language is very helpful in creating a common understanding of student outcomes
among varied users, such as educators, curriculum developers, and assessment designers.
Clarifications could come via boundary statements that describe the limits of standards; parenthetical
notes within the standards themselves; or separate, nonassessable statements that accompany the
standards. This is particularly true when words like abstraction, parallelization, and even algorithms
may be used differently in different disciplines. Technical terms should be defined and, as often as
possible, plain language restatements added so that the readers, particularly teachers, will be able to
understand and apply the standards consistently for both curriculum and assessment. Explanations,
simpler language, and/or detailed descriptions would be helpful to ensure consistent application of
the standards (see Figure 7.7).

Figure 7.7: Example of technical terms versus simple language in standards

Standard 1: Use an API by calling a procedure and supplying arguments with appropriate data
types to efficiently employ high-level functionality.

Standard 2: Select and use a procedure from a library of procedures (API) and provide
appropriate input as arguments to replace repetitive code.

The second standard retains “API” (application programming interface), adds more accessible
wording such as “library of procedures,” and prefaces the specific programming term “argument”
with the more general “appropriate input.” The second standard continues to use the terms
“procedure” and “arguments” as these are necessary terms that provide clarity. Accessible
standards use key terminology to provide clarity and avoid extraneous terms and technical jargon.

Examples are very useful to communicate the intent of the standards to users. However, when
examples are used, we recommend that multiple examples always be present. The use of single
examples can often seem to be a limiting factor or inadvertent prescription of curriculum
(Achieve, 2010).

136 K–12 Computer Science Framework

Guidance for Standards Developers

Recommendation 6: Coherence/Progression. We recommend that standards be
organized as progressions that support student learning of content and practices
over multiple grades.

Coherence refers to how well a set of standards conveys a unified vision of the discipline, establishing
connections among the major areas of study and showing a meaningful progression of content across
grade levels and grade spans.

Research on student learning indicates that students need explicit help to connect new ideas to ideas
that have been learned previously (Marzano, 2004). To support teachers as they help students make
these connections, standards should describe developmentally appropriate levels of a learning
progression, and the learning progressions embedded in standards must be made apparent to users.
This is true for both the content and the practices, as students’ facilities with each of the practices
change and deepen over time when they are provided adequate instructional opportunities. Separate
displays that show the progression of each dimension through K–12 have been very useful to
educators in implementing standards.

The framework writers were careful to describe coherent progressions of content and skills across
grade bands. Standards based on the framework, however, may be written for individual grade levels.
In that case, care should be taken to ensure that the progression from grade level to grade level is
coherent and research-based as much as possible and that student knowledge and practice will build
on the foundation of content and skills learned previously. The progressions in the framework revolve
around a central subconcept in each core concept area and reflect developmentally appropriate
milestones that grow in sophistication from kindergarten to Grade 12 (see Figure 7.8).

K–12 Computer Science Framework 137

Guidance for Standards Developers

Figure 7.8: Example learning progression

Computing Systems.Hardware and Software

By the end of Grade 2: A computing system is composed of hardware and software. Hardware
consists of physical components, while software provides instructions for the system. These
instructions are represented in a form that a computer can understand.

By the end of Grade 5: Hardware and software work together as a system to accomplish tasks,
such as sending, receiving, processing, and storing units of information as bits. Bits serve as the
basic unit of data in computing systems and can represent a variety of information.

By the end of Grade 8: Hardware and software determine a computing system’s capability to
store and process information. The design or selection of a computing system involves multiple
considerations and potential tradeoffs, such as functionality, cost, size, speed, accessibility, and
aesthetics.

By the end of Grade 12: Levels of interaction exist between the hardware, software, and user of
a computing system. The most common levels of software that a user interacts with include
system software and applications. System software controls the flow of information between
hardware components used for input, output, storage, and processing.

Recommendation 7: Measurability. We recommend ensuring that each standard is
objective and measurable.

Standards should focus on the results, rather than the processes of teaching and learning. They should
make use of performance verbs that call for students to demonstrate knowledge and skills, with each
standard being measurable, observable, or verifiable in some way.

To be effective for teaching and learning, standards must be observable and measurable. What the
standard intends a student to understand or be able to do should be clear. Accordingly, teachers
need to be able to clearly determine if the expectation has been met to know whether students need
further help with these concepts.

However, standards do not necessarily need to be written such that they could be tested on a large-
scale summative assessment. They simply need to be observable by some measure, including by a
classroom teacher. Careful selection of the verbs used in each standard, along with specificity of
content, will help ensure that the standard is observable and measurable (see Table 7.3).

138 K–12 Computer Science Framework

Guidance for Standards Developers

Table 7.3: Examples of verbs that assist with measurability

V E R B S T H AT R E F E R
T O O B S E R VA B L E
P E R F O R M A N C E
O R R E S U LT S

V E R B S T H AT R E F E R
T O L E A R N I N G
A C T I V I T I E S

V E R B S T H AT R E F E R
T O C O G N I T I V E
P R O C E S S E S

Create
Develop
Test
Refine
Communicate

Examine
Explore
Observe
Discover

Know
Understand
Appreciate

Recommendation 8: Integration of Practices and Concepts. We recommend that
standards integrate the computer science practices with the concept statements.

To realize the vision described in this framework and to ensure that all students can become proficient
users of computer science knowledge and practice, the practices and concepts should be integrated
in the standards, as well as in curriculum and instruction.

Previous sets of education standards in many different disciplines included separate practice and
content standards. However, because teachers and curriculum designers were more familiar and
comfortable with the content standards, the practice standards were very rarely implemented. They
were separate, so they were typically left out or “covered” in the first week of school and then
forgotten, or they were used irregularly. One efficient way to help ensure that practices are included
throughout instruction is to integrate them completely with the content standards.

More important, part of the vision for computer science education is that students will become
proficient at using and applying knowledge—not just memorizing it. If application and deep
understanding is indeed the goal, education standards should be written to reflect that goal. By
combining a practice with each concept statement to create a standard, the resulting standards
more closely describe the behavior, abilities, and deep knowledge we want students to have.

K–12 Computer Science Framework 139

Guidance for Standards Developers

Figure 7.9 below shows an example of how to integrate a computer science practice with a concept
statement from the framework.

Figure 7.9: Example of integrating a practice and concept to create a standard

The following steps were taken to create this example.

1. The writer chose a specific practice statement within Practice 3: Recognizing and Defining
Computational Problems.

2. The writer selected a portion of the Data and Analysis concept statement as a context for
applying the practice.

3. The practice and concept were combined to create an observable performance expectation that
calls for the application of the practice within the context of the concept. The bolded verb stem
in the practice statement helped to focus the action in the standard.

P R A C T I C E C O N C E P T S TA N D A R D

Recognizing and Defining
Computational Problems

Evaluate whether it is
appropriate and feasible

to solve a problem
computationally.

Different software tools
used to access data may
store the data differently.
The type of data being
stored and the level of

detail represented by that
data affect the storage

requirements.

Evaluate the
appropriateness of different

ways to store data
computationally based on

the type of data and level of
detail.

Data and Analysis
By the end of 5th grade...

Data and Analysis
(5th grade)

140 K–12 Computer Science Framework

Guidance for Standards Developers

Figure 7.10 provides another example of integrating a practice and concept to create a standard. By
using the checklist provided in Recommendation 1: Rigor, we see that this standard requires an
appropriate level of content understanding, as reflected in the concept portion [highlighted in blue]
and engagement with a practice [highlighted in magenta], which facilitates the application of the
content [the standard as a whole].

Figure 7.10: Second example of integrating a practice and concept to create a standard

It is not expected, or recommended, that each concept statement be combined with statements from
all of the practices to form multiple standards. For example, although there are a total of 68 concept
statements and seven practices (each of which has multiple statements), a K–12 standard set should not
expect to have 476 standards (i.e., 68 multiplied by 7). Only the practice statements that are most
relevant to a concept statement should be considered. In addition, remember that integrating practices
with concept statements often introduces more rigor to the student performance expectation than
would be seen in the concept statement on its own because students now will have to do something
with that conceptual knowledge. Care should be taken to ensure that the particular combination of
practices and concepts does not introduce a higher level of rigor than is appropriate for the grade band.
Figure 7.11 provides an exercise for standards developers using these considerations.

P R A C T I C E C O N C E P T S TA N D A R D

Fostering an Inclusive
Computing Culture

Address the needs of
diverse end users during

the design process to
produce artifacts with broad

accessibility and usability.

Design decisions often
involve tradeoffs.

Address the needs of
diverse end users in the
design of a program and

analyze the tradeoffs
associated with serving a
wide range of end users.

Algorithms and
Programming

By the end of 12th grade...

Algorithms and
Programming
(10th grade)

K–12 Computer Science Framework 141

Guidance for Standards Developers

Figure 7.11: Exercise in standards creation

Recommendation 9: Connections to Other Disciplines. We recommend that
computer science standards be written to align with and connect to other academic
standards, such as mathematics and science.

There are many possible ways computer science can connect with other subjects, like math, science,
and engineering, as well as humanities, such as languages, social studies, art, and music. Making
intentional connections between computer science standards and academic standards in other
disciplines will help teachers understand how computer science can connect with their implementa-
tion of standards in other subjects and promote more coherent education experiences for students.
While related, technology/digital literacy and computer science are distinct subjects.

With limited time in the classroom, students’ education should be as coherent as possible. When
content in different disciplines is related or connecting, it is important to point out those connections
to educators and to facilitate them through standards. When potential alignments are not recognized
in standards, extra instructional time may be required to cover everything. For example, if a core math
concept is required for third grade computer science standards but is not included in math standards
until fifth grade, third grade teachers would need to add that concept into their computer science
curriculum, or they might end up ignoring the computer science content due to an impression that it
is too overwhelming.

In addition to aligning grade-level expectations, it can also be helpful to include clarifying examples
that align and connect to math, science, and engineering standards (see Figure 7.12).

1. As a group, pick the same concept and practice and create a standard from the pairing.
2. Compare each other’s proposed standard.
3. Ask:
 a. Is the rigor appropriate for the grade band?
 b. Is the performance expectation clear?
 c. Does it accurately reflect components of the concept and practice?
 d. Is this an appropriate standard for all students or just those going on to
 extended study?

142 K–12 Computer Science Framework

Guidance for Standards Developers

Figure 7.12: Example of a computer science standard that connects with a science standard

Standard: Test and refine a program using a wide range of inputs until criteria and constraints
are met.

This standard connects with Next Generation Science Standard MS-ETS1-2 Engineering Design: Evaluate competing

design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Attention should also be given to connections to subjects outside of science, technology, engineer-
ing, and math, such as language arts literacy standards for technical subjects. Since computer science
is not currently required or assessed in most states, illustrating how the standards connect to and help
meet existing standards in other subjects will be very useful. These connections can be made through
ancillary materials like crosswalks and examples and can be used as a tool to integrate content from
other subjects into computer science or embed computer science content into other subjects. This is
particularly true for Grades K–8, as budget constraints may not allow for separate computer science
teachers in elementary and middle schools.

In 2010, the Association for Computing Machinery’s Running on Empty reported that “there is deep
and widespread confusion within the states as to what should constitute and how to differentiate
technology education, literacy and fluency; information technology education; and computer science
as an academic subject” (p. 9). While it is plausible to combine digital/technology literacy standards
with academic computer science standards, care should be taken so as not to confuse addressing one
with addressing the other. For example, while a digital presentation can be used to communicate a
team’s software development process, the creation of the digital presentation, or the general use of
office productivity software, is not a computer science activity. Again, Running on Empty reported that
“consistent with efforts to improve ‘technology literacy,’ states are focused almost exclusively on
skill-based aspects of computing (such as using a computer in other learning activities) and have few
standards on the conceptual aspects of computer science that lay the foundation for innovation and
deeper study in the field (for example, develop an understanding of an algorithm)” (p. 7). If combining
digital literacy and computer science into one set of standards, it is important that the distinction be
kept clear through separately identifiable strands.

K–12 Computer Science Framework 143

References
Achieve. (2010). International science benchmarking report. http://www.achieve.org/files/InternationalScience

BenchmarkingReport.pdf

Association for Computing Machinery & Computer Science Teachers Association. (2010). Running on empty: The failure to
teach K–12 computer science in the digital age. Retrieved from http://runningonempty.acm.org/fullreport2.pdf

Flannery, L. P., Kazakoff, E. R., Bontá, P., Silverman, B., Bers, M. U., & Resnick, M. (2013, June). Designing ScratchJr: Support
for early childhood learning through computer programming. In Proceedings of the 12th International Conference on
Interaction Design and Children (pp. 1–10).

Marzano, R. J. (2004). Building background knowledge for academic achievement: Research on what works in schools.
Alexandria, VA: Association for Supervision and Curriculum Development.

National Research Council. (2012). A Framework for K–12 science education: Practices, crosscutting concepts, and core ideas.
Committee on a Conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division
of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

Guidance for Standards Developers

http://www.achieve.org/files/InternationalScienceBenchmarkingReport.pdf
http://www.achieve.org/files/InternationalScienceBenchmarkingReport.pdf
http://runningonempty.acm.org/fullreport2.pdf

	_gjdgxs
	_ntedlzrmxene
	_30j0zll
	_dv19kovwnzz
	_1fob9te
	_2et92p0
	_3znysh7
	_tyjcwt
	_1t3h5sf
	_gkpx0hw0a7ow
	_30j0zll
	_3znysh7
	_tyjcwt
	_gjdgxs
	_30j0zll
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_4d34og8
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_lnxbz9
	_35nkun2
	_n03lgdcofoir
	_nou9ad38rb4l
	_k6etk1a2m9el
	_mshnd8o7ca4j
	_2jxsxqh
	_z337ya
	_3j2qqm3
	_1y810tw
	_4i7ojhp
	_2xcytpi
	_1ci93xb
	_3whwml4
	_2bn6wsx
	_vxbi13ra6xnw
	_oq4bw6qu00en
	_vnt2z13httib
	_3dsgmtojcrn1
	_nwtj4sm50xbb
	_evyvh4n7wc2d
	_8hrbywj6mg0d
	_t7lrckqhqym2
	_o3mcawjbgeks
	_gjdgxs
	_30j0zll
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_4d34og8
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_lnxbz9
	_35nkun2
	_gjdgxs
	_30j0zll
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_4d34og8
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_lnxbz9
	_35nkun2
	_1ksv4uv
	_44sinio
	_2jxsxqh
	_z337ya
	_3j2qqm3
	_1y810tw
	_4i7ojhp
	_2xcytpi
	_1ci93xb
	_3whwml4
	_2bn6wsx
	_qsh70q
	_3as4poj
	_1pxezwc
	_49x2ik5
	_2p2csry
	_147n2zr
	_3o7alnk
	_23ckvvd
	_ihv636
	_32hioqz
	_1hmsyys
	_41mghml
	_n3yqdwi9v4bh
	_efoxbo4re20m
	_q07qal58ianh
	_gjdgxs
	_gjdgxs
	_8zzotam92416
	_30j0zll
	_gjdgxs
	_pqep9jxzfj0x
	_30j0zll
	_vjc0kb2rklzd
	_al6d6o8eqk07
	_wp2yrmqn9aa3
	_5t9duqnazkdr
	_672261yahcee
	_d7jox9hl55xa
	_463s3tgl5qww
	_x4unwwe0b78x
	_6nv5kefdkhyf
	Executive Summary
	Chapter 1: A vision for K-12 Computer Science
	Chapter 2: Equity in Computer Science Education
	Chapter 3: Development Process
	Chapter 4: Navigating the Framework
	Chapter 5: Practices
	Chapter 6: Concepts
	Chapter 7: Guidance for Standards Developers
	Chapter 8: Implementation Guidance
	Chapter 9: Computer Science in Early Childhood Education
	Chapter 10: The role of research
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Figure 0.1: The K–12 Computer Science Framework
	Figure 1.1: Building blocks for standards
	Figure 2.1: Example of block-based programming language
	Figure 3.1: Framework development process
	Figure 3.2: Example of connection between two concepts in the same grade band
	Figure 3.3: Example of connection between two concepts in different grade bands
	Figure 3.4: Example of connection between two statements in the same core concept and grade band
	Figure 4.1: How to read the practices
	Figure 4.2: How to read the concepts
	Figure 4.3: Grade band view
	Figure 4.4: Progression view
	Figure 4.5: Concept view
	Figure 5.1: Core practices including computational thinking
	Figure 5.2: Relationships between computer science, science and engineering, and math practices
	Figure 7.1: Building blocks for standards
	Figure 7.2: Differentiating rigor for all students
	Figure 7.3: Determining the right amount of rigor for a standard
	Figure 7.4: Focusing on the concept
	Figure 7.5: A spectrum of specificity in standards
	Figure 7.6: Calibrating specificity across standards writers
	Figure 7.7: Example of technical terms versus simple language in standards
	Figure 7.8: Example learning progression
	Figure 7.9: Example of integrating a practice and concept to create a standard
	Figure 7.10: Second example of integrating a practice and concept to create a standard
	Figure 7.11: Exercise in standards creation
	Figure 7.12: Example of a computer science standard that connects with a science standard
	Figure 8.1: Recommended policies that promote and support computer science education
	Figure 8.2: Concepts and practices of the K–12 Computer Science Framework
	Figure 8.3: Characteristics of careers that students deem important
	Figure 8.4: Example of a culturally situated computing activity
	Figure 8.5: An example of the iterative process students could use to create a garden of flowers
	Figure 8.6: Options for implementing computer science
	Figure 8.7: Multiple pathways for implementing K–12 computer science
	Figure 8.8: Sample interview activity based on the framework
	Figure 9.1: Integrating powerful ideas in computer science and early childhood education
	Figure 9.2: Identifying patterns
	Figure 9.3: Student using technology resources during "Inventors Studio"
	Figure 9.4: Example of representing numbers using fingers
	Figure 9.5: Numeric values that represent colors
	Figure 9.6: Sequence of steps to make a cheeseburger
	Figure A.1: Occupations of reviewers
	Figure A.2: Survey responses on the importance of the framework

