
V I E W B Y C O N C E P T

CC BY-NC-SA 4.0. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/
Authorization to reproduce this report in whole or in part is granted. Examples of programs and resources are provided for the reader’s convenience and do not represent an endorsement.

Suggested citation: K–12 Computer Science Framework. (2016). Framework view by concept. Retrieved from http://www.k12cs.org

Suggested attribution: “The K–12 Computer Science Framework, led by the Association for Computing Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, and National Math and Science Initiative
in partnership with states and districts, informed the development of this work.”

How to refer to the concepts: [Grade Band].[Core Concept].[Subconcept]
Example: K–2.Algorithms and Programming.Program Development

How to refer to the practices: P[Practice Number].[Core Practice].[Practice Statement Number]
Example: P4.Developing and Using Abstractions.1

The Concepts and Practices of the K–12 Computer Science Framework

Core Concepts

1. Computing Systems
2. Networks and the Internet
3. Data and Analysis
4. Algorithms and Programming
5. Impacts of Computing

Core Practices

1. Fostering an Inclusive Computing Culture
2. Collaborating Around Computing
3.	 Recognizing	and	Defining	Computational	Problems
4. Developing and Using Abstractions
5. Creating Computational Artifacts
6.	 Testing	and	Refining	Computational	Artifacts
7. Communicating About Computing

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.k12cs.org

Practices 1

Practices

Practice 1. Fostering an Inclusive Computing Culture

Overview: Building an inclusive and diverse computing culture requires strategies for incorporating perspectives
from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding
the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of
diverse users during the design process is essential to producing inclusive computational products.

By the end of Grade 12, students should be able to

1. Include the unique perspectives of others	and	reflect	on	one’s	own	perspectives	when	designing	and	developing	computational	products.	

At all grade levels, students should recognize that the choices people make when they create artifacts are based on personal interests, experiences, and

needs. Young learners should begin to differentiate their technology preferences from the technology preferences of others. Initially, students should be

presented with perspectives from people with different backgrounds, ability levels, and points of view. As students progress, they should independently

seek diverse perspectives throughout the design process for the purpose of improving their computational artifacts. Students who are well-versed in

fostering an inclusive computing culture should be able to differentiate backgrounds and skillsets and know when to call upon others, such as to seek out

knowledge about potential end users or intentionally seek input from people with diverse backgrounds.

2. Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.

At any level, students should recognize that users of technology have different needs and preferences and that not everyone chooses to use, or is able

to use, the same technology products. For example, young learners, with teacher guidance, might compare a touchpad and a mouse to examine

differences in usability. As students progress, they should consider the preferences of people who might use their products. Students should be able to

evaluate the accessibility of a product to a broad group of end users, such as people with various disabilities. For example, they may notice that allowing

an end user to change font sizes and colors will make an interface usable for people with low vision. At the higher grades, students should become aware

of professionally accepted accessibility standards and should be able to evaluate computational artifacts for accessibility. Students should also begin to

identify potential bias during the design process to maximize accessibility in product design. For example, they can test an app and recommend to its

designers that it respond to verbal commands to accommodate users who are blind or have physical disabilities.

Practices 2

3. Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

After students have experience identifying diverse perspectives and including unique perspectives (P1.1), they should begin to employ self-advocacy

strategies, such as speaking for themselves if their needs are not met. As students progress, they should advocate for their peers when accommodations,

such as an assistive-technology peripheral device, are needed for someone to use a computational artifact. Eventually, students should regularly

advocate for both themselves and others.

Practice 2. Collaborating Around Computing

Overview: Collaborative computing is the process of performing a computational task by working in pairs and
on teams. Because it involves asking for the contributions and feedback of others, effective collaboration can lead
to better outcomes than working independently. Collaboration requires individuals to navigate and incorporate
diverse perspectives, conflicting ideas, disparate skills, and distinct personalities. Students should use collaborative
tools to effectively work together and to create complex artifacts.

By the end of Grade 12, students should be able to

1. Cultivate working relationships with individuals possessing diverse perspectives, skills, and personalities.

At any grade level, students should work collaboratively with others. Early on, they should learn strategies for working with team members who possess

varying individual strengths. For example, with teacher support, students should begin to give each team member opportunities to contribute and to

work with each other as co-learners. Eventually, students should become more sophisticated at applying strategies for mutual encouragement and

support. They should express their ideas with logical reasoning and find ways to reconcile differences cooperatively. For example, when they disagree,

they should ask others to explain their reasoning and work together to make respectful, mutual decisions. As they progress, students should use

methods for giving all group members a chance to participate. Older students should strive to improve team efficiency and effectiveness by regularly

evaluating group dynamics. They should use multiple strategies to make team dynamics more productive. For example, they can ask for the opinions of

quieter team members, minimize interruptions by more talkative members, and give individuals credit for their ideas and their work.

Practices 3

2. Create team norms, expectations, and equitable workloads	to	increase	efficiency	and	effectiveness.	

After students have had experience cultivating working relationships within teams (P2.1), they should gain experience working in particular team roles.

Early on, teachers may help guide this process by providing collaborative structures. For example, students may take turns in different roles on the

project, such as note taker, facilitator, or “driver” of the computer. As students progress, they should become less dependent on the teacher assigning

roles and become more adept at assigning roles within their teams. For example, they should decide together how to take turns in different roles.

Eventually, students should independently organize their own teams and create common goals, expectations, and equitable workloads. They should also

manage project workflow using agendas and timelines and should evaluate workflow to identify areas for improvement.

3. Solicit and incorporate feedback from, and provide constructive feedback to, team members and other stakeholders.

At any level, students should ask questions of others and listen to their opinions. Early on, with teacher scaffolding, students should seek help and share

ideas to achieve a particular purpose. As they progress in school, students should provide and receive feedback related to computing in constructive

ways. For example, pair programming is a collaborative process that promotes giving and receiving feedback. Older students should engage in active

listening by using questioning skills and should respond empathetically to others. As they progress, students should be able to receive feedback from

multiple peers and should be able to differentiate opinions. Eventually, students should seek contributors from various environments. These contributors

may include end users, experts, or general audiences from online forums.

4. Evaluate and select technological tools that can be used to collaborate on a project.

At any level, students should be able to use tools and methods for collaboration on a project. For example, in the early grades, students could

collaboratively brainstorm by writing on a whiteboard. As students progress, they should use technological collaboration tools to manage teamwork,

such as knowledge-sharing tools and online project spaces. They should also begin to make decisions about which tools would be best to use and when

to use them. Eventually, students should use different collaborative tools and methods to solicit input from not only team members and classmates but

also others, such as participants in online forums or local communities.

Practices 4

Practice 3. Recognizing and Defining Computational Problems

Overview: The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that
develops over time and is central to computing. Solving a problem with a computational approach requires defining
the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution
is appropriate.

By the end of Grade 12, students should be able to

1. Identify complex, interdisciplinary, real-world problems that can be solved computationally.

At any level, students should be able to identify problems that have been solved computationally. For example, young students can discuss a technology

that has changed the world, such as email or mobile phones. As they progress, they should ask clarifying questions to understand whether a problem

or part of a problem can be solved using a computational approach. For example, before attempting to write an algorithm to sort a large list of

names, students may ask questions about how the names are entered and what type of sorting is desired. Older students should identify more complex

problems that involve multiple criteria and constraints. Eventually, students should be able to identify real-world problems that span multiple disciplines,

such as increasing bike safety with new helmet technology, and can be solved computationally.

2. Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.

At any grade level, students should be able to break problems down into their component parts. In the early grade levels, students should focus on

breaking down simple problems. For example, in a visual programming environment, students could break down (or decompose) the steps needed to

draw a shape. As students progress, they should decompose larger problems into manageable smaller problems. For example, young students may think

of an animation as multiple scenes and thus create each scene independently. Students can also break down a program into subgoals: getting input from

the user, processing the data, and displaying the result to the user. Eventually, as students encounter complex real-world problems that span multiple

disciplines or social systems, they should decompose complex problems into manageable subproblems that could potentially be solved with programs or

procedures that already exist. For example, students could create an app to solve a community problem that connects to an online database through an

application programming interface (API).

Practices 5

3. Evaluate whether it is appropriate and feasible to solve a problem computationally.

After students have had some experience breaking problems down (P3.2) and identifying subproblems that can be solved computationally (P3.1), they

should begin to evaluate whether a computational solution is the most appropriate solution for a particular problem. For example, students might

question whether using a computer to determine whether someone is telling the truth would be advantageous. As students progress, they should

systematically evaluate the feasibility of using computational tools to solve given problems or subproblems, such as through a cost-benefit analysis.

Eventually, students should include more factors in their evaluations, such as how efficiency affects feasibility or whether a proposed approach raises

ethical concerns.

Practice 4. Developing and Using Abstractions

Overview: Abstractions are formed by identifying patterns and extracting common features from specific examples
to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the
development process by managing complexity.

By the end of Grade 12, students should be able to

1. Extract common features from a set of interrelated processes or complex phenomena.

Students at all grade levels should be able to recognize patterns. Young learners should be able to identify and describe repeated sequences in data

or code through analogy to visual patterns or physical sequences of objects. As they progress, students should identify patterns as opportunities for

abstraction, such as recognizing repeated patterns of code that could be more efficiently implemented as a loop. Eventually, students should extract

common features from more complex phenomena or processes. For example, students should be able to identify common features in multiple segments

of code and substitute a single segment that uses variables to account for the differences. In a procedure, the variables would take the form of

parameters. When working with data, students should be able to identify important aspects and find patterns in related data sets such as crop output,

fertilization methods, and climate conditions.

Practices 6

2. Evaluate existing technological functionalities and incorporate them into new designs.

At all levels, students should be able to use well-defined abstractions that hide complexity. Just as a car hides operating details, such as the mechanics

of the engine, a computer program’s “move” command relies on hidden details that cause an object to change location on the screen. As they progress,

students should incorporate predefined functions into their designs, understanding that they do not need to know the underlying implementation

details of the abstractions that they use. Eventually, students should understand the advantages of, and be comfortable using, existing functionalities

(abstractions) including technological resources created by other people, such as libraries and application programming interfaces (APIs). Students should

be able to evaluate existing abstractions to determine which should be incorporated into designs and how they should be incorporated. For example,

students could build powerful apps by incorporating existing services, such as online databases that return geolocation coordinates of street names or

food nutrition information.

3. Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

After students have had some experience identifying patterns (P4.1), decomposing problems (P3.2), using abstractions (P4.2), and taking advantage of

existing resources (P4.2), they should begin to develop their own abstractions. As they progress, students should take advantage of opportunities to

develop generalizable modules. For example, students could write more efficient programs by designing procedures that are used multiple times in the

program. These procedures can be generalized by defining parameters that create different outputs for a wide range of inputs. Later on, students should

be able to design systems of interacting modules, each with a well-defined role, that coordinate to accomplish a common goal. Within an object-oriented

programming context, module design may include defining the interactions among objects. At this stage, these modules, which combine both data and

procedures, can be designed and documented for reuse in other programs. Additionally, students can design points of interaction, such as a simple user

interface, either text or graphical, that reduces the complexity of a solution and hides lower-level implementation details.

4. Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.

Students at all grade levels should be able to represent patterns, processes, or phenomena. With guidance, young students can draw pictures to

describe a simple pattern, such as sunrise and sunset, or show the stages in a process, such as brushing your teeth. They can also create an animation

to model a phenomenon, such as evaporation. As they progress, students should understand that computers can model real-world phenomena, and

they should use existing computer simulations to learn about real-world systems. For example, they may use a preprogrammed model to explore how

parameters affect a system, such as how rapidly a disease spreads. Older students should model phenomena as systems, with rules governing the

interactions within the system. Students should analyze and evaluate these models against real-world observations. For example, students might

create a simple producer–consumer ecosystem model using a programming tool. Eventually, they could progress to creating more complex and realistic

interactions between species, such as predation, competition, or symbiosis, and evaluate the model based on data gathered from nature.

Practices 7

Practice 5. Creating Computational Artifacts

Overview: The process of developing computational artifacts embraces both creative expression and the
exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are
personally relevant or beneficial to their community and beyond. Computational artifacts can be created by
combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts
include programs, simulations, visualizations, digital animations, robotic systems, and apps.

By the end of Grade 12, students should be able to

1. Plan the development of	a	computational	artifact	using	an	iterative	process	that	includes	reflection	on	and	modification	of	the	plan,	taking	into	account	
key features, time and resource constraints, and user expectations.

At any grade level, students should participate in project planning and the creation of brainstorming documents. The youngest students may do so with

the help of teachers. With scaffolding, students should gain greater independence and sophistication in the planning, design, and evaluation of artifacts.

As learning progresses, students should systematically plan the development of a program or artifact and intentionally apply computational techniques,

such as decomposition and abstraction, along with knowledge about existing approaches to artifact design. Students should be capable of reflecting on

and, if necessary, modifying the plan to accommodate end goals.

2. Create a computational artifact for practical intent, personal expression, or to address a societal issue.

Students at all grade levels should develop artifacts in response to a task or a computational problem. At the earliest grade levels, students should be

able to choose from a set of given commands to create simple animated stories or solve pre-existing problems. Younger students should focus on

artifacts of personal importance. As they progress, student expressions should become more complex and of increasingly broader significance.

Eventually, students should engage in independent, systematic use of design processes to create artifacts that solve problems with social significance

by seeking input from broad audiences.

Practices 8

3. Modify an existing artifact to improve or customize it.

At all grade levels, students should be able to examine existing artifacts to understand what they do. As they progress, students should attempt to use

existing solutions to accomplish a desired goal. For example, students could attach a programmable light sensor to a physical artifact they have created

to make it respond to light. Later on, they should modify or remix parts of existing programs to develop something new or to add more advanced

features and complexity. For example, students could modify prewritten code from a single-player game to create a two-player game with slightly

different rules.

Practice 6. Testing and Refining Computational Artifacts

Overview: Testing and refinement is the deliberate and iterative process of improving a computational artifact.
This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs and expectations of end users and improve the
performance, reliability, usability, and accessibility of artifacts.

By the end of Grade 12, students should be able to

1. Systematically test computational artifacts by considering all scenarios and using test cases.

At any grade level, students should be able to compare results to intended outcomes. Young students should verify whether given criteria and

constraints have been met. As students progress, they should test computational artifacts by considering potential errors, such as what will happen if a

user enters invalid input. Eventually, testing should become a deliberate process that is more iterative, systematic, and proactive. Older students should

be able to anticipate errors and use that knowledge to drive development. For example, students can test their program with inputs associated with all

potential scenarios.

2. Identify and fix errors using a systematic process.

At any grade level, students should be able to identify and fix errors in programs (debugging) and use strategies to solve problems with computing

systems (troubleshooting). Young students could use trial and error to fix simple errors. For example, a student may try reordering the sequence of

commands in a program. In a hardware context, students could try to fix a device by resetting it or checking whether it is connected to a network. As

Practices 9

students progress, they should become more adept at debugging programs and begin to consider logic errors: cases in which a program works, but not

as desired. In this way, students will examine and correct their own thinking. For example, they might step through their program, line by line, to identify

a loop that does not terminate as expected. Eventually, older students should progress to using more complex strategies for identifying and fixing errors,

such as printing the value of a counter variable while a loop is running to determine how many times the loop runs.

3. Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and accessibility.

After students have gained experience testing (P6.2), debugging, and revising (P6.1), they should begin to evaluate and refine their computational

artifacts. As students progress, the process of evaluation and refinement should focus on improving performance and reliability. For example, students

could observe a robot in a variety of lighting conditions to determine that a light sensor should be less sensitive. Later on, evaluation and refinement

should become an iterative process that also encompasses making artifacts more usable and accessible (P1.2). For example, students can incorporate

feedback from a variety of end users to help guide the size and placement of menus and buttons in a user interface.

Practice 7. Communicating About Computing

Overview: Communication involves personal expression and exchanging ideas with others. In computer science,
students communicate with diverse audiences about the use and effects of computation and the appropriateness
of computational choices. Students write clear comments, document their work, and communicate their ideas
through multiple forms of media. Clear communication includes using precise language and carefully considering
possible audiences.

By the end of Grade 12, students should be able to

1. Select, organize, and interpret large data sets from multiple sources to support a claim.

At any grade level, students should be able to refer to data when communicating an idea. Early on, students should, with guidance, present basic data

through the use of visual representations, such as storyboards, flowcharts, and graphs. As students progress, they should work with larger data sets

and organize the data in those larger sets to make interpreting and communicating it to others easier, such as through the creation of basic data

representations. Eventually, students should be able to select relevant data from large or complex data sets in support of a claim or to communicate

the information in a more sophisticated manner.

Practices 10

2. Describe, justify, and document computational processes and solutions using appropriate terminology consistent with the intended audience
and purpose.

At any grade level, students should be able to talk about choices they make while designing a computational artifact. Early on, they should use language

that articulates what they are doing and identifies devices and concepts they are using with correct terminology (e.g., program, input, and debug).

Younger students should identify the goals and expected outcomes of their solutions. Along the way, students should provide documentation for end

users that explains their artifacts and how they function, and they should both give and receive feedback. For example, students could provide a project

overview and ask for input from users. As students progress, they should incorporate clear comments in their product and document their process using

text, graphics, presentations, and demonstrations.

3. Articulate ideas responsibly by observing intellectual property rights and giving appropriate attribution.

All students should be able to explain the concepts of ownership and sharing. Early on, students should apply these concepts to computational ideas

and creations. They should identify instances of remixing, when ideas are borrowed and iterated upon, and give proper attribution. They should

also recognize the contributions of collaborators. Eventually, students should consider common licenses that place limitations or restrictions on the

use of computational artifacts. For example, a downloaded image may have restrictions that prohibit modification of an image or using it for

commercial purposes.

Concepts — Computing Systems 11

Concepts

Computing Systems

Overview: People interact with a wide variety of computing devices that collect, store, analyze, and act upon information in ways that can affect human capabilities
both positively and negatively. The physical components (hardware) and instructions (software) that make up a computing system communicate and process
information in digital form. An understanding of hardware and software is useful when troubleshooting a computing system that does not work as intended.

By the end of Grade 2: By the end of Grade 5: By the end of Grade 8: By the end of Grade 12:

DEVICES
Overview: Many everyday objects contain computational components that sense and act on the world. In early grades, students learn features and applications
of common computing devices. As they progress, students learn about connected systems and how the interaction between humans and devices influences
design decisions.

People use computing devices to
perform a variety of tasks accurately
and quickly. Computing devices
interpret and follow the instructions
they are given literally.

Computing devices can be used to do a
number of things, such as play music,
create documents, and send pictures.
Computing devices are also very
precise. For example, computers can
perform multiple complex calculations
much faster and with greater accuracy
than people. While people may diverge
from instructions given to them,
computers will follow instructions
exactly as they are given, even if they
do not achieve the intended result.

Crosscutting Concept: Human–
Computer Interaction

Connections Within Framework: K–2.
Algorithms and Programming.Control;
K–2.Algorithms and Programming.
Modularity; 3–5.Algorithms and
Programming.Control

Computing devices may be connect-
ed to other devices or components to
extend their capabilities, such as
sensing and sending information.
Connections can take many forms,
such as physical or wireless. Together,
devices and components form a
system of interdependent parts that
interact for a common purpose.

Computing devices often depend on
other devices or components. For
example, a robot depends on a
physically attached light sensor to
detect changes in brightness, whereas
the light sensor depends on the robot
for power. A smartphone can use
wirelessly connected headphones to
send audio information, and the
headphones are useless without a
music source.

Crosscutting Concepts: Communication
and Coordination; System Relationships

The interaction between humans
and computing devices presents
advantages, disadvantages, and
unintended consequences. The study
of human–computer interaction can
improve the design of devices and
extend the abilities of humans.

Accessibility is an important consider-
ation in the design of any computing
system. For example, assistive devices
provide capabilities such as scanning
written information and converting it to
speech. The use of computing devices
also has potential consequences, such as
in the areas of privacy and security. For
example, GPS-enabled smartphones can
provide directions to a destination yet
unintentionally allow a person to be
tracked for malicious purposes. Also, the
attention required to follow GPS
directions can lead to accidents due to
distracted driving.

Crosscutting Concepts: Human–
Computer Interaction; Privacy and
Security

Computing devices are often inte-
grated with other systems, including
biological, mechanical, and social
systems. These devices can share
data with one another. The usability,
dependability, security, and accessibil-
ity of these devices, and the systems
they are integrated with, are import-
ant considerations in their design as
they evolve.

A medical device can be embedded
inside a person to monitor and regulate
his or her health, a hearing aid (a type
of assistive device) can filter out certain
frequencies and magnify others, a
monitoring device installed in a motor
vehicle can track a person’s driving
patterns and habits, and a facial
recognition device can be integrated
into a security system to identify a
person. The devices embedded in
everyday objects, vehicles, and
buildings allow them to collect and
exchange data, creating a network (e.g.,
Internet of Things). The creation of
integrated or embedded systems is not
an expectation at this level.

Table continued on next page

Concepts — Computing Systems 12

Connection Within Framework: 3–5.
Networks and the Internet.Network
Communication and Organization

Connection Within Framework:
3–5.Impacts of Computing.Culture

Crosscutting Concepts: System
Relationships; Human–Computer
Interaction; Privacy and Security

Connections Within Framework: 9–12.
Networks and the Internet.Network
Communication and Organization;
9–12. Data and Analysis.Collection;
9–12. Impacts of Computing.Culture

Table continued from previous page

Concepts — Computing Systems 13

HARDWARE AND SOFTWARE
Overview: Computing systems use hardware and software to communicate and process information in digital form. In early grades, students learn how systems use
both hardware and software to represent and process information. As they progress, students gain a deeper understanding of the interaction between hardware and
software at multiple levels within computing systems.

A computing system is composed of
hardware and software. Hardware
consists of physical components,
while software provides instructions
for the system. These instructions
are represented in a form that a
computer can understand.

Examples of hardware include screens
to display information and buttons,
keys, or dials to enter information.
Software applications are programs with
specific purposes, such as a web
browser or game. A person may use a
mouse (hardware) to click on a button
displayed in a web browser (software) to
navigate to a new web page. Comput-
ing systems convert instructions, such as
“print,” “save,” or “crop,” into a special
language that the computer can
understand. At this level, understanding
that computer information is encoded is
appropriate, but the explicit under-
standing of “bits” is reserved for later
grade levels.

Crosscutting Concept: Communication
and Coordination

Connections Within Framework: K–2.
Algorithms and Programming.
Algorithms; K–2.Algorithms and
Programming.Control

Hardware and software work together
as a system to accomplish tasks, such
as sending, receiving, processing, and
storing units of information as bits.
Bits serve as the basic unit of data in
computing systems and can represent
a variety of information.

For example, a photo filter application
(software) works with a camera (hard-
ware) to produce a variety of effects
that change the appearance of an
image. This image is transmitted and
stored as bits, or binary digits, which are
commonly represented as 0s and 1s. All
information, including instructions, is
encoded as bits. Knowledge of the
inner workings of hardware and
software, number systems such as
binary or hexadecimal, and how bits are
represented in physical media are not
priorities at this level.

Crosscutting Concepts:
Communication and Coordination;
Abstraction

Connection Within Framework: 3–5.
Data and Analysis.Storage

Hardware and software determine
a computing system’s capability to
store and process information.
The design or selection of a
computing system involves multiple
considerations and potential
tradeoffs, such as functionality,
cost, size, speed, accessibility,
and aesthetics.

The capability of a computing system is
determined by the processor speed,
storage capacity, and data transmission
speed, as well as other factors. Select-
ing one computing system over another
involves balancing a number of
tradeoffs. For example, selecting a
faster computer with more memory
involves the tradeoffs of speed and
cost. Choosing one operating system
over another involves the tradeoff of
capability and compatibility, such as
which apps can be installed or which
devices can be connected. Designing a
robot requires choosing both hardware
and software and may involve a tradeoff
between the potential for customization
and ease of use. The use of a device
that connects wirelessly through a
Bluetooth connection versus a device
that connects physically through a USB
connection involves a tradeoff between
mobility and the need for an additional
power source for the wireless device.

Crosscutting Concepts: System
Relationships; Communication and
Coordination

Connection Within Framework: 6–8.
Data and Analysis.Collection

Levels of interaction exist between the
hardware, software, and user of a
computing system. The most common
levels of software that a user interacts
with include system software and
applications. System software controls
the	flow	of	information	between	
hardware components used for input,
output, storage, and processing.

At its most basic level, a computer is
composed of physical hardware and
electrical impulses. Multiple layers of
software are built upon the hardware
and interact with the layers above and
below them to reduce complexity.
System software manages a computing
device’s resources so that software can
interact with hardware. For example, text
editing software interacts with the
operating system to receive input from
the keyboard, convert the input to bits
for storage, and interpret the bits as
readable text to display on the monitor.
System software is used on many
different types of devices, such as
smart TVs, assistive devices, virtual
components, cloud components,
and drones. Knowledge of specific,
advanced terms for computer
architecture, such as BIOS, kernel, or
bus, is not expected at this level.

Crosscutting Concepts: Abstraction;
Communication and Coordination;
System Relationships

Connections Within Framework: 9–12.
Networks and the Internet.Network
Communication and Organization;
9–12. Algorithms and Programming.
Variables; 9–12.Algorithms and
Programming. Modularity

Concepts — Computing Systems 14

TROUBLESHOOTING
Overview: When computing systems do not work as intended, troubleshooting strategies help people solve the problem. In early grades, students learn that
identifying the problem is the first step to fixing it. As they progress, students learn systematic problem-solving processes and how to develop their own
troubleshooting strategies based on a deeper understanding of how computing systems work.

Computing systems might not work
as expected because of hardware or
software problems. Clearly describing
a	problem	is	the	first	step	toward	
finding	a	solution.

Problems with computing systems have
different causes, such as hardware
settings, programming errors, or faulty
connections to other devices. Develop-
mentally appropriate ways to solve
problems include debugging simple
programs and seeking help by clearly
describing a problem (for example, “The
computer won’t turn on,” “The pointer
on the screen won’t move,” or “I lost the
web page.”) Knowing how to diagnose
or troubleshoot a problem with a
computing system is not expected.

Crosscutting Concept: System
Relationships

Connection Within Framework: 3–5.
Algorithms and Programming.Program
Development

Computing systems share similarities,
such as the use of power, data, and
memory. Common troubleshooting
strategies, such as checking that
power is available, checking that
physical and wireless connections are
working, and clearing out the working
memory by restarting programs or
devices, are effective for many
systems.

Although computing systems may vary,
common troubleshooting strategies can
be used on them, such as checking
connections and power or swapping a
working part in place of a potentially
defective part. Rebooting a machine
is commonly effective because it
resets the computer. Because
computing devices are composed
of an interconnected system of hard-
ware and software, troubleshooting
strategies may need to address both.

Crosscutting Concepts: System
Relationships; Abstraction

Connection Within Framework: 3–5.
Networks and the Internet.Network
Communication and Organization

Comprehensive troubleshooting
requires knowledge of how computing
devices and components work and
interact. A systematic process will
identify the source of a problem,
whether within a device or in a larger
system of connected devices.

Just as pilots use checklists to trouble-
shoot problems with aircraft systems,
people can use a similar, structured
process to troubleshoot problems with
computing systems and ensure that
potential solutions are not overlooked.
Because a computing device may
interact with interconnected devices
within a system, problems may not be
due to the specific computing device
itself but to devices connected to it.
Examples of system components that
may need troubleshooting are physical
and wireless connections, peripheral
equipment, and network hardware.
Strategies for troubleshooting a
computing system and debugging a
program include some problem-solving
steps that are similar.

Crosscutting Concepts: System
Relationships; Abstraction

Connection Within Framework:
6–8.Algorithms and Programming.
Algorithms

Troubleshooting complex problems
involves the use of multiple sources
when researching, evaluating, and
implementing potential solutions.
Troubleshooting also relies on
experience, such as when people
recognize that a problem is similar
to one they have seen before or
adapt solutions that have worked
in the past.

Troubleshooting information may come
from external sources, such as user
manuals, online technical forums, or
manufacturer websites. Distinguishing
between reliable and unreliable sources
is important. Examples of complex
troubleshooting strategies include
resolving connectivity problems,
adjusting system configurations and
settings, ensuring hardware and
software compatibility, and transferring
data from one device to another.

Crosscutting Concepts: Abstraction;
System Relationships

Connection Within Framework: 9–12.
Algorithms and Programming.Program
Development

Concepts — Networks and the Internet 15

Networks and the Internet

Overview: Computing devices typically do not operate in isolation. Networks connect computing devices to share information and resources and are an increasingly
integral part of computing. Networks and communication systems provide greater connectivity in the computing world by providing fast, secure communication and
facilitating innovation.

By the end of Grade 2: By the end of Grade 5: By the end of Grade 8: By the end of Grade 12:

NETWORK COMMUNICATION AND ORGANIZATION
Overview: Computing devices communicate with each other across networks to share information. In early grades, students learn that computers connect them to
other people, places, and things around the world. As they progress, students gain a deeper understanding of how information is sent and received across different
types of networks.

Computer networks can be used to
connect people to other people,
places, information, and ideas. The
Internet enables people to connect
with others worldwide through many
different points of connection.

Small, wireless devices, such as cell
phones, communicate with one another
through a series of intermediary connec-
tion points, such as cellular towers. This
coordination among many computing
devices allows a person to voice call a
friend or video chat with a family
member. Details about the connection
points are not expected at this level.

Crosscutting Concepts: Communication
and Coordination; Human–Computer
Interaction

Connections Within Framework:
K–2.Impacts of Computing. Social
Interactions; K–2.Data and Analysis.
Collection; 3–5.Impacts of Computing.
Social Interactions

Information needs a physical or
wireless path to travel to be sent and
received, and some paths are better
than others. Information is broken
into smaller pieces, called packets,
that are sent independently and
reassembled at the destination.
Routers and switches are used to
properly send packets across paths to
their destinations.

There are physical paths for communi-
cating information, such as ethernet
cables, and wireless paths, such as
Wi-Fi. Often, information travels on a
combination of physical and wireless
paths; for example, wireless paths
originate from a physical connection
point. The choice of device and type of
connection will affect the path informa-
tion travels and the potential bandwidth
(the capacity to transmit data or bits in a
given timeframe). Packets and packet
switching (the method used to send
packets) are the foundation for further
understanding of Internet concepts. At
this level, the priority is understanding
the flow of information, rather than
details of how routers and switches
work and how to compare paths.

Computers send and receive informa-
tion based on a set of rules called
protocols.	Protocols	define	how	
messages between computers are
structured and sent. Considerations
of security, speed, and reliability are
used to determine the best path to
send and receive data.

Protocols allow devices with different
hardware and software to communicate,
in the way that people with different
native languages may use a common
language for business. Protocols describe
established commands and responses
between computers on a network, such
as requesting data or sending an image.
There are many examples of protocols
including TCP/IP (Transmission Control
Protocol/Internet Protocol) and HTTP
(Hypertext Transfer Protocol), which serve
as the foundation for formatting and
transmitting messages and data,
including pages on the World Wide Web.
Routers also implement protocols to
record the fastest and most reliable paths
by sending small packets as tests. The
priority at this grade level is understand-
ing the purpose of protocols, while
knowing details of how specific protocols
work is not expected.

Network topology is determined, in
part, by how many devices can be
supported. Each device is assigned
an	address	that	uniquely	identifies	it	
on the network. The scalability and
reliability of the Internet are enabled
by the hierarchy and redundancy
in networks.

Large-scale coordination occurs among
many different machines across multiple
paths every time a web page is opened
or an image is viewed online. Devices
on the Internet are assigned an Internet
Protocol (IP) address to allow them to
communicate. The design decisions
that directed the coordination among
systems composing the Internet also
allowed for scalability and reliability.
Scalability is the capability of a network
to handle a growing amount of work or
its potential to be enlarged to accom-
modate that growth.

Crosscutting Concepts:
Communication and Coordination;
Abstraction; System Relationships

Table continued on next page

Concepts — Networks and the Internet 16

Crosscutting Concept: Communication
and Coordination

Connections Within Framework: 3–5.
Computing Systems.Devices; 3–5.
Computing Systems.Troubleshooting

 Crosscutting Concepts: Communication
and Coordination; Abstraction; Privacy and
Security

Connection Within Framework: 6–8.
Data and Analysis.Storage

Connections Within Framework: 9–12.
Computing Systems.Devices; 9–12.
Computing Systems.Hardware and
Software; 9–12.Impacts of Computing.
Social Interactions

Table continued from previous page

Concepts — Networks and the Internet 17

CYBERSECURITY
Overview: Transmitting information securely across networks requires appropriate protection. In early grades, students learn how to protect their personal
information. As they progress, students learn increasingly complex ways to protect information sent across networks.

Connecting devices to a network or
the	Internet	provides	great	benefit,	
care must be taken to use authentica-
tion measures, such as strong
passwords, to protect devices and
information from unauthorized
access.

Authentication is the ability to verify the
identity of a person or entity. User-
names and passwords, such as those on
computing devices or Wi-Fi networks,
provide a way of authenticating a user’s
identity. Because computers make
guessing weak passwords easy, strong
passwords have characteristics that
make them more time-intensive to
break.

Crosscutting Concepts: Privacy and
Security; Communication and
Coordination

Connection Within Framework: K–2.
Impacts of Computing.Safety, Law, and
Ethics

Information can be protected using
various security measures. These
measures can be physical and/or
digital.

An offline backup of data is useful in
case of an online security breach. A
variety of software applications can
monitor and address viruses and
malware and alert users to their
presence. Security measures can be
applied to a network or individual
devices on a network. Confidentiality
refers to the protection of information
from disclosure to unauthorized
individuals, systems, or entities.

Crosscutting Concept: Privacy and
Security

Connection Within Framework: 3–5.
Impacts of Computing.Safety, Law, and
Ethics

The information sent and received
across networks can be protected
from unauthorized access and
modification	in	a	variety	of	ways,	such	
as	encryption	to	maintain	its	confi-
dentiality and restricted access to
maintain its integrity.

Security measures to safeguard online
information proactively address the
threat of breaches to personal and
private data.

The integrity of information involves
ensuring its consistency, accuracy, and
trustworthiness. For example, HTTPS
(Hypertext Transfer Protocol Secure) is
an example of a security measure to
protect data transmissions. It provides a
more secure browser connection than
HTTP (Hypertext Transfer Protocol)
because it encrypts data being sent
between websites. At this level,
understanding the difference between
HTTP and HTTPS, but not how the
technologies work, is important.

Crosscutting Concept: Privacy and
Security

Connection Within Framework: 6–8.
Impacts of Computing.Safety, Law, and
Ethics

Network security depends on a
combination of hardware, software,
and practices that control access to
data and systems. The needs of users
and the sensitivity of data determine
the level of security implemented.

Security measures may include physical
security tokens, two-factor authentica-
tion, and biometric verification, but
every security measure involves
tradeoffs between the accessibility and
security of the system. Potential security
problems, such as denial-of-service
attacks, ransomware, viruses, worms,
spyware, and phishing, exemplify why
sensitive data should be securely stored
and transmitted. The timely and reliable
access to data and information services
by authorized users, referred to as
availability, is ensured through ade-
quate bandwidth, backups, and other
measures.

Crosscutting Concepts: Privacy and
Security; System Relationships; Human–
Computer Interaction

Connection Within Framework: 9–12.
Algorithms and Programming.
Algorithms

Concepts — Data and Analysis 18

Data and Analysis

Overview: Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, so the need to process data effectively is
increasingly important. Data is collected and stored so that it can be analyzed to better understand the world and make more accurate predictions.

By the end of Grade 2: By the end of Grade 5: By the end of Grade 8: By the end of Grade 12:

COLLECTION
Overview: Data is collected with both computational and noncomputational tools and processes. In early grades, students learn how data about themselves and
their world is collected and used. As they progress, students learn the effects of collecting data with computational and automated tools.

Everyday digital devices collect and
display data over time. The collection
and use of data about individuals
and the world around them is a
routine	part	of	life	and	influences	
how people live.

Many everyday objects, such as cell
phones, digital toys, and cars, can
contain tools (such as sensors) and
computers to collect and display data
from their surroundings.

Crosscutting Concept: Human–
Computer Interaction

Connection Within Framework: K–2.
Networks and the Internet.Network
Communication and Organization

People select digital tools for the
collection of data based on what is
being observed and how the data will
be used. For example, a digital
thermometer is used to measure
temperature and a GPS sensor is
used to track locations.

There is a wide array of digital data
collection tools; however, only some are
appropriate for certain types of data.
Tools are chosen based upon the type of
measurement they use as well as the
type of data people wish to observe.
Data scientists use the term observation
to describe data collection, whether or
not a human is involved in the collection.

Crosscutting Concept: Abstraction

Connections Within Framework: 3–5.
Algorithms and Programming.Variables;
3–5.Algorithms and Programming.
Algorithms

People design algorithms and tools
to automate the collection of data by
computers. When data collection is
automated, data is sampled and
converted into a form that a comput-
er can process. For example, data
from an analog sensor must be
converted into a digital form. The
method used to automate data
collection	is	influenced	by	the	
availability of tools and the intended
use of the data.

Data can be collected from either
individual devices or systems. The
method of data collection (for example,
surveys versus sensor data) can affect
the accuracy and precision of the data.
Some types of data are more difficult to
collect than others. For example,
emotions must be subjectively evaluat-
ed on an individual basis and are thus
difficult to measure across a population.
Access to tools may be limited by
factors including cost, training, and
availability.

Crosscutting Concept: Human–
Computer Interaction

Connection Within Framework: 6–8.
Computing Systems.Hardware and
Software

Data is constantly collected or
generated through automated
processes that are not always evident,
raising privacy concerns. The different
collection methods and tools that are
used	influence	the	amount	and	
quality of the data that is observed
and recorded.

Data can be collected and aggregated
across millions of people, even when
they are not actively engaging with or
physically near the data collection
devices. This automated and nonevident
collection can raise privacy concerns,
such as social media sites mining an
account even when the user is not
online. Other examples include surveil-
lance video used in a store to track
customers for security or information
about purchase habits or the monitoring
of road traffic to change signals in real
time to improve road efficiency without
drivers being aware. Methods and
devices for collecting data can differ by
the amount of storage required, level of
detail collected, and sampling rates. For
example, ultrasonic range finders are
good at long distances and are very
accurate, as compared to infrared range
finders, which are better for short
distances. Computer models and
simulations produce large amounts of
data used in analysis.

Table continued on next page

Concepts — Data and Analysis 19

Crosscutting Concept: Privacy and
Security

Connections Within Framework: 9–12.
Computing Systems.Devices; 9–12.
Impacts of Computing.Safety, Law,
and Ethics

Table continued from previous page

Concepts — Data and Analysis 20

STORAGE
Overview: Core functions of computers are storing, representing, and retrieving data. In early grades, students learn how data is stored on computers. As they
progress, students learn how to evaluate different storage methods, including the tradeoffs associated with those methods.

Computers store data that can be
retrieved later. Identical copies of
data can be made and stored in
multiple locations for a variety
of reasons, such as to protect
against loss.

For example, pictures can be stored on
a cell phone and viewed later, or
progress in a game can be saved and
continued later. The advantage of
recording data digitally, such as in
images or a spreadsheet, versus on a
physical space, such as a whiteboard, is
that old data (states of data collected
over time) can be easily retrieved,
copied, and stored in multiple places.
This is why personal information put
online can persist for a long time.
Understanding local versus online
storage is not expected at this level.

Crosscutting Concepts: System
Relationships; Privacy and Security

Connections Within Framework:
K–2.Impacts of Computing.Social
Interactions; K–2.Algorithms and
Programming.Variables

Different software tools used to
access data may store the data
differently. The type of data being
stored and the level of detail repre-
sented by that data affect the storage
requirements.

Music, images, video, and text require
different amounts of storage. Video will
often require more storage than music
or images alone because video
combines both. For example, two
pictures of the same object can require
different amounts of storage based
upon their resolution. Different software
tools used to access and store data may
add additional data about the data
(metadata), which results in different
storage requirements. An image file is a
designed representation of a real-world
image and can be opened by either an
image editor or a text editor, but the
text editor does not know how to
translate the data into the image.
Understanding binary or 8-bit versus
16-bit representations is not expected
at this level.

Crosscutting Concept: System
Relationships

Connections Within Framework:
3–5.Computing Systems.Hardware and
Software; 3–5.Algorithms and
Programming.Variables

Applications store data as a represen-
tation. Representations occur at
multiple levels, from the arrangement
of information into organized formats
(such as tables in software) to the
physical storage of bits. The software
tools used to access information
translate the low-level representation
of bits into a form understandable
by people.

Computers can represent a variety of
data using discrete values at many
different levels, such as characters,
numbers, and bits. Text is represented
using character encoding standards like
UNICODE, which represent text as
numbers. All numbers and other types
of data are encoded and stored as bits
on a physical medium. Lossy and
lossless data formats are used to store
different levels of detail, but whenever
digital data is used to represent analog
measurements, such as temperature or
sound, information is lost. Representa-
tions, or file formats, can contain
metadata that is not always visible to
the average user. There are privacy
implications when files contain metada-
ta, such as the location where a
photograph was taken.

Crosscutting Concept: Abstraction

Connections Within Framework: 6–8.
Algorithms and Programming. Variables;
6–8.Networks and the Internet.Network
Communication and Organization

Data can be composed of multiple
data elements that relate to one
another. For example, population data
may contain information about age,
gender, and height. People make
choices about how data elements are
organized and where data is stored.
These choices affect cost, speed,
reliability, accessibility, privacy, and
integrity.

A data model combines data elements
and describes the relationships among
the elements. Data models represent
choices made about which data
elements are available and feasible to
collect. Storing data locally may increase
security but decrease accessibility.
Storing data on a cloud-based,
redundant storage system may increase
accessibility but reduce security, as it can
be accessed online easily, even by
unauthorized users. Data redundancies
and backups are useful for restoring data
when integrity is compromised.

Crosscutting Concepts: System
Relationships; Privacy and Security;
Communication and Coordination

Connection Within Framework:
9–12.Algorithms and Programming.
Algorithms

Concepts — Data and Analysis 21

VISUALIZATION AND TRANSFORMATION
Overview: Data is transformed throughout the process of collection, digital representation, and analysis. In early grades, students learn how transformations can be
used to simplify data. As they progress, students learn about more complex operations to discover patterns and trends and communicate them to others.

Data can be displayed for communi-
cation in many ways. People use
computers to transform data into new
forms, such as graphs and charts.

Examples of displays include picture
graphs, bar charts, or histograms. A
data table that records a tally of
students’ favorite colors can be
displayed as a chart on a computer.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.
Impacts of Computing. Social
Interactions

People select aspects and subsets of
data to be transformed, organized,
clustered, and categorized to provide
different views and communicate
insights gained from the data.

Data is often sorted or grouped to
provide additional clarity. Data points
can be clustered by a number of
commonalities without a category label.
For example, a series of days might be
grouped by temperature, air pressure,
and humidity and later categorized as
fair, mild, or extreme weather. The same
data could be manipulated in different
ways to emphasize particular aspects or
parts of the data set. For example,
when working with a data set of popular
songs, data could be shown by genre
or artist. Simple data visualizations
include graphs and charts, infographics,
and ratios that represent statistical
characteristics of the data.

Crosscutting Concept: Abstraction:
Human–Computer Interaction

Connection Within Framework:
6–8.Impacts of Computing.Social
Interactions

Data can be transformed to remove
errors, highlight or expose relation-
ships, and/or make it easier for
computers to process.

The cleaning of data is an important
transformation for reducing noise and
errors. An example of noise would be
the first few seconds of a sample in
which an audio sensor collects extrane-
ous sound created by the user position-
ing the sensor. Errors in survey data are
cleaned up to remove spurious or
inappropriate responses. An example of
a transformation that highlights a
relationship is representing two groups
(such as males and females) as percent-
ages of a whole instead of as individual
counts. Computational biologists use
compression algorithms to make
extremely large data sets of genetic
information more manageable and the
analysis more efficient.

Crosscutting Concept: Abstraction

Connection Within Framework:
6–8.Algorithms and Programming.
Algorithms

People transform, generalize, simplify,
and present large data sets in
different	ways	to	influence	how	other	
people interpret and understand the
underlying information. Examples
include visualization, aggregation,
rearrangement, and application of
mathematical operations.

Visualizations, such as infographics, can
obscure data and positively or negative-
ly influence people’s views of the data.
People use software tools or program-
ming to create powerful, interactive
data visualizations and perform a range
of mathematical operations to transform
and analyze data. Examples of mathe-
matical operations include those related
to aggregation, such as summing and
averaging. The same data set can be
visualized or transformed to support
multiple sides of an issue.

Crosscutting Concept: Abstraction:
Human–Computer Interaction

Connection Within Framework:
6–8.Impacts of Computing.Social
Interactions

INFERENCE AND MODELS
Overview: Data science is one example where computer science serves many fields. Computer science and science use data to make inferences, theories, or
predictions based upon the data collected from users or simulations. In early grades, students learn about the use of data to make simple predictions. As they
progress, students learn how models and simulations can be used to examine theories and understand systems and how predictions and inferences are affected by
more complex and larger data sets.

Data can be used to make inferences
or predictions about the world.
Inferences, statements about
something that cannot be readily
observed, are often based on
observed data. Predictions,
statements about future events, are
based on patterns in data and can
be made by looking at data visualiza-
tions, such as charts and graphs.

Observations of people’s clothing
(jackets and coats) can be used to make
an inference about the weather (it is
cold outside). Patterns in past data can
be identified and extrapolated to make
predictions. For example, a person’s
lunch menu selection can be predicted
by using data on past lunch selections.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.
Impacts of Computing.Culture

The accuracy of inferences and
predictions is related to how
realistically data is represented.
Many	factors	influence	the	accuracy	
of inferences and predictions, such
as the amount and relevance of data
collected.

People use data to highlight or propose
cause-and-effect relationships and
predict outcomes. Basing inferences or
predictions on data does not guarantee
their accuracy; the data must be
relevant and of sufficient quantity. An
example of irrelevance is using eye
color data when inferring someone’s
age. An example of insufficient quantity
is predicting the outcome of an election
by polling only a few people.

Crosscutting Concept: System
Relationships

Computer models can be used to
simulate events, examine theories and
inferences, or make predictions with
either few or millions of data points.
Computer models are abstractions
that represent phenomena and use
data and algorithms to emphasize key
features and relationships within a
system. As more data is automatically
collected,	models	can	be	refined.

Very large data sets require a model for
analysis; they are too large to be
analyzed by examining all of the
records. While individual users are
online, shopping websites and online
advertisements use personal data they
generate, compared to millions of other
users, to predict what they would like
and make recommendations. A
video-streaming website may recom-
mend videos based on models generat-
ed from other users and based upon-
their personal habits and preferences.
The data that is collected about an
individual and potential inferences
made from that data can have implica-
tions for privacy.

Crosscutting Concepts: Privacy and
Security; Abstraction

Connections Within Framework:
6–8.Algorithms and Programming.
Algorithms; 6–8.Impacts of
Computing.Culture

The accuracy of predictions or
inferences depends upon the
limitations of the computer model
and the data the model is built upon.
The amount, quality, and diversity of
data and the features chosen can
affect the quality of a model and
ability to understand a system.
Predictions or inferences are tested
to validate models.

Large data sets are used to make
models used for inference or predic-
tions, such as forecasting earthquakes,
traffic patterns, or the results of car
crashes. Larger quantities and higher
quality of collected data will tend to
improve the accuracy of models. For
example, using data from 1,000 car
crashes would generally yield a more
accurate model than using data from
100 crashes. Additionally, car crashes
provide a wide variety of data points,
such as impact speed, car make and
model, and passenger type, and this
data is useful in the development of
injury prevention measures.

Crosscutting Concepts: Abstraction;
Privacy and Security

Concepts — Data and Analysis 22

Concepts — Algorithms and Programming 23

Algorithms and Programming

Overview: An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for
computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve
compelling problems. The development process to create meaningful and efficient programs involves choosing which information to use and how to process and
store it, breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.

By the end of Grade 2: By the end of Grade 5: By the end of Grade 8: By the end of Grade 12:

ALGORITHMS
Overview: Algorithms are designed to be carried out by both humans and computers. In early grades, students learn about age-appropriate algorithms from the real
world. As they progress, students learn about the development, combination, and decomposition of algorithms, as well as the evaluation of competing algorithms.

People follow and create processes as
part of daily life. Many of these
processes can be expressed as
algorithms that computers can follow.

Routines, such as morning meeting,
clean-up time, and dismissal, are
examples of algorithms that are
common in many early elementary
classrooms. Other examples of algo-
rithms include making simple foods,
navigating a classroom, and daily
routines like brushing teeth. Just as
people use algorithms to complete
daily routines, they can program
computers to use algorithms to
complete different tasks. Algorithms are
commonly implemented using a precise
language that computers can interpret.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.
Computing Systems.Hardware and
Software

Different algorithms can achieve the
same result. Some algorithms are
more	appropriate	for	a	specific	
context than others.

Different algorithms can be used to tie
shoes or decide which path to take on
the way home from school. While the
end results may be similar, they may not
be the same: in the example of going
home, some paths could be faster,
slower, or more direct, depending on
varying factors, such as available time or
the presence of obstacles (for example,
a barking dog). Algorithms can be
expressed in noncomputer languages,
including natural language, flowcharts,
and pseudocode.

Crosscutting Concept: Abstraction

Connection Within Framework: 3–5.
Data and Analysis.Collection

Algorithms affect how people interact
with computers and the way computers
respond. People design algorithms that
are generalizable to many situations.
Algorithms that are readable are easier
to follow, test, and debug.

Algorithms control what recommenda-
tions a user may get on a music-
streaming website, how a game
responds to finger presses on a
touchscreen, and how information is sent
across the Internet. An algorithm that is
generalizable to many situations can
produce different outputs, based on a
wide range of inputs. For example, an
algorithm for a smart thermostat may
control the temperature based on the
time of day, how many people are at
home, and current electricity consump-
tion. The testing of an algorithm requires
the use of inputs that reflect all possible
conditions to evaluate its accuracy
and robustness.

Crosscutting Concepts: Human–
Computer Interaction; Abstraction

Connections Within Framework: 6–8.
Data and Analysis.Inference and
Models; 6–8.Computing Systems.
Troubleshooting; 6–8.Data and Analysis.
Visualization and Transformation

People evaluate and select algorithms
based on performance, reusability,
and ease of implementation.
Knowledge of common algorithms
improves how people develop
software, secure data, and store
information.

Some algorithms may be easier to
implement in a particular programming
language, work faster, require less
memory to store data, and be applicable
in a wider variety of situations than other
algorithms. Algorithms used to search
and sort data are common in a variety of
software applications. Encryption
algorithms are used to secure data, and
compression algorithms make data
storage more efficient. At this level,
analysis may involve simple calculations
of steps. Analysis using sophisticated
mathematical notation to classify
algorithm performance, such as Big-O
notation, is not expected.

Crosscutting Concepts: Abstraction;
Privacy and Security

Connections Within Framework: 9–12.
Data and Analysis. Storage; 9–12.
Networks and the Internet.Cybersecurity

Concepts — Algorithms and Programming 24

VARIABLES
Overview: Computer programs store and manipulate data using variables. In early grades, students learn that different types of data, such as words, numbers, or
pictures, can be used in different ways. As they progress, students learn about variables and ways to organize large collections of data into data structures of
increasing complexity.

Information in the real world can be
represented in computer programs.
Programs store and manipulate data,
such as numbers, words, colors, and
images. The type of data determines
the actions and attributes associated
with it.

Different actions are available for
different kinds of information. For
example, sprites (character images) can
be moved and turned, numbers can be
added or subtracted, and pictures can
be recolored or cropped.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.
Data and Analysis.Storage

Programming languages provide
variables, which are used to store and
modify data. The data type determines
the values and operations that can be
performed on that data.

Variables are the vehicle through which
computer programs store different types
of data. At this level, understanding how
to use variables is sufficient, without a fuller
understanding of the technical aspects of
variables (such as identifiers and memory
locations). Data types vary by program-
ming language, but many have types for
numbers and text. Examples of operations
associated with those types are multiplying
numbers and combining text. Some visual,
blocks-based languages do not have
explicitly declared types but still have
certain operations that apply only to
particular types of data in a program.

Crosscutting Concept: Abstraction

Connection Within Framework: 3–5.
Data and Analysis. Storage

Programmers create variables to store
data values of selected types. A
meaningful	identifier	is	assigned	to	
each variable to access and perform
operations on the value by name.
Variables	enable	the	flexibility	to	
represent different situations, process
different sets of data, and produce
varying outputs.

At this level, students deepen their
understanding of variables, including
when and how to declare and name
new variables. A variable is like a
container with a name, in which the
contents may change, but the name
(identifier) does not. The identifier
makes keeping track of the data that is
stored easier, especially if the data
changes. Naming conventions for
identifiers, and thoughtful choices of
identifiers, improve program readability.

The term variable is used differently in
programming than the way it is com-
monly used in mathematics: a program
variable refers to a location in which a
value is stored, and the name used to
access the value is called the identifier. A
program variable is assigned a value,
and that value may change throughout
the execution of the program. Mathema-
ticians typically do not make a distinction
between a variable and the variable
name. A mathematics variable often
represents a set of values for which the
statement containing the variable is true.

Crosscutting Concept: Abstraction

Connection Within Framework: 6–8.
Data and Analysis.Storage

Data structures are used to manage
program complexity. Programmers
choose data structures based on
functionality, storage, and perfor-
mance tradeoffs.

A list is a common type of data
structure that is used to facilitate the
efficient storage, ordering, and retrieval
of values and various other operations
on its contents. Tradeoffs are associated
with choosing different types of lists.
Knowledge of advanced data
structures, such as stacks, queues,
trees, and hash tables, is not expected.
User-defined types and object-oriented
programming are optional concepts
at this level.

Crosscutting Concepts: Abstraction;
System Relationships

Connection Within Framework: 6–8.
Computing Systems.Hardware and
Software

Concepts — Algorithms and Programming 25

CONTROL
Overview: Control structures specify the order in which instructions are executed within an algorithm or program. In early grades, students learn about sequential
execution and simple control structures. As they progress, students expand their understanding to combinations of structures that support complex execution.

Computers follow precise sequences
of instructions that automate tasks.
Program execution can also be
nonsequential by repeating patterns
of instructions and using events to
initiate instructions.

Computers follow instructions literally.
Examples of sequences of instructions
include steps for drawing a shape or
moving a character across the screen.
An event, such as the press of a button,
can trigger an action. Simple loops can
be used to repeat instructions. At this
level, distinguishing different types of
loops is not expected.

Crosscutting Concept: Abstraction

Connections Within Framework:
K–2.Computing Systems.Devices;
K–2.Computing Systems. Hardware
and Software

Control structures, including loops,
event handlers, and conditionals, are
used	to	specify	the	flow	of	execution.	
Conditionals selectively execute or
skip instructions under different
conditions.

Different types of loops are used to
repeat instructions in multiple ways
depending on the situation. Examples
of events include mouse clicks, typing
on the keyboard, and collisions
between objects. Event handlers are
sets of commands that are tied to
specific events. Conditionals represent
decisions and are composed of a
Boolean condition that specifies actions
based on whether the condition
evaluates to true or false. Boolean logic
and operators (e.g., AND, OR, NOT)
can be used to specify the appropriate
groups of instructions to execute under
various conditions.

Crosscutting Concepts: Abstraction;
Communication and Coordination

Connection Within Framework: K–2.
Computing Systems.Devices

Programmers select and combine
control structures, such as loops,
event handlers, and conditionals, to
create more complex program
behavior.

Conditional statements can have
varying levels of complexity, including
compound and nested conditionals.
Compound conditionals combine two or
more conditions in a logical relationship,
and nesting conditionals within one
another allows the result of one
conditional to lead to another being
evaluated. An example of a nested
conditional structure is deciding what to
do based on the weather outside. If it is
sunny outside, I will further decide if I
want to ride my bike or go running,
but if it is not sunny outside, I will decide
whether to read a book or watch TV.
Different types of control structures
can be combined with one another,
such as loops and conditionals. Different
types of programming languages
implement control structures in different
ways. For example, functional program-
ming languages implement repetition
using recursive function calls instead of
loops. At this level, understanding
implementation in multiple languages is
not essential.

Crosscutting Concept: Abstraction

Programmers consider tradeoffs
related to implementation, readabili-
ty, and program performance when
selecting and combining control
structures.

Implementation includes the choice of
programming language, which affects
the time and effort required to create a
program. Readability refers to how clear
the program is to other programmers
and can be improved through docu-
mentation. The discussion of perfor-
mance is limited to a theoretical
understanding of execution time and
storage requirements; a quantitative
analysis is not expected. Control
structures at this level may include
conditional statements, loops, event
handlers, and recursion. Recursion is a
control technique in which a procedure
calls itself and is appropriate when
problems can be expressed in terms
of smaller versions of themselves.
Recursion is an optional concept at
this level.

Crosscutting Concepts: Abstraction;
System Relationships

Concepts — Algorithms and Programming 26

MODULARITY
Overview: Modularity involves breaking down tasks into simpler tasks and combining simple tasks to create something more complex. In early grades, students learn
that algorithms and programs can be designed by breaking tasks into smaller parts and recombining existing solutions. As they progress, students learn about
recognizing patterns to make use of general, reusable solutions for commonly occurring scenarios and clearly describing tasks in ways that are widely usable.

Complex tasks can be broken down
into simpler instructions, some of
which can be broken down even
further. Likewise, instructions can
be combined to accomplish
complex tasks.

Decomposition is the act of breaking
down tasks into simpler tasks. An
example of decomposition is preparing
for a party: it involves inviting guests,
making food, and setting the table.
These tasks can be broken down
further. For example, setting the table
involves laying a tablecloth, folding
napkins, and placing utensils and plates
on the table. Another example is
breaking down the steps to draw a
polygon.

Composition, on the other hand, is the
combination of smaller tasks into more
complex tasks. To build a city, people
build several houses, a school, a store,
etc. To create a group art project,
people can paint or draw their favorite
ocean animal, then combine them to
create an ecosystem.

Crosscutting Concept: System
Relationships

Connection Within Framework: K–2.
Computing Systems. Devices

Programs can be broken down into
smaller parts to facilitate their design,
implementation, and review. Pro-
grams can also be created by incor-
porating smaller portions of programs
that have already been created.

Decomposition facilitates aspects of
program development, such as testing,
by allowing people to focus on one
piece at a time. Decomposition also
enables different people to work on
different parts at the same time. An
example of decomposition at this level
is creating an animation by separating a
story into different scenes. For each
scene, a background needs to be
selected, characters placed, and actions
programmed. The instructions required
to program each scene may be similar
to instructions in other programs.

Crosscutting Concepts: System
Relationships; Abstraction

Programs use procedures to organize
code, hide implementation details,
and make code easier to reuse.
Procedures can be repurposed in new
programs.	Defining	parameters	for	
procedures can generalize behavior
and increase reusability.

A procedure is a module (a group of
instructions within a program) that
performs a particular task. In this
framework, procedure is used as a
general term that may refer to an actual
procedure or a method, function, or
similar concept in other programming
languages. Procedures are invoked to
repeat groups of instructions. For
example, a procedure, such as one to
draw a circle, involves many instructions,
but all of them can be invoked with one
instruction, such as “drawCircle.”
Procedures that are defined with
parameters are generalizable to many
situations and will produce different
outputs based on a wide range of inputs
(arguments).

Crosscutting Concepts: Abstraction;
System Relationships

Complex programs are designed as
systems of interacting modules, each
with	a	specific	role,	coordinating	for	a	
common overall purpose. These
modules can be procedures within a
program; combinations of data and
procedures; or independent, but
interrelated, programs. Modules
allow for better management of
complex tasks.

Software applications require a
sophisticated approach to design
that uses a systems perspective. For
example, object-oriented programming
decomposes programs into modules
called objects that pair data with
methods (variables with procedures).
The focus at this level is understanding a
program as a system with relationships
between modules. The choice of
implementation, such as programming
language or paradigm, may vary.

Crosscutting Concepts: System
Relationships; Abstraction

Connection Within Framework:
9–12.Computing Systems.Hardware
and Software

Concepts — Algorithms and Programming 27

PROGRAM DEVELOPMENT
Overview: Programs are developed through a design process that is often repeated until the programmer is satisfied with the solution. In early grades, students
learn how and why people develop programs. As they progress, students learn about the tradeoffs in program design associated with complex decisions involving
user constraints, efficiency, ethics, and testing.

People develop programs collabora-
tively and for a purpose, such as
expressing ideas or addressing
problems.

People work together to plan, create,
and test programs within a context that
is relevant to the programmer and
users. Programming is used as a tool to
create products that reflect a wide
range of interests, such as video
games, interactive art projects, and
digital stories.

Crosscutting Concept: Human–
Computer Interaction

Connection Within Framework:
3–5. Impacts of Computing.Culture

People develop programs using an
iterative process involving design,
implementation, and review. Design
often involves reusing existing code or
remixing other programs within a
community. People continuously
review whether programs work as
expected,	and	they	fix,	or	debug,	parts	
that do not. Repeating these steps
enables	people	to	refine	and	improve	
programs.

Design, implementation, and review can
be further broken down into additional
stages and may have different labels. The
design stage occurs before writing code.
This is a planning stage in which the
programmers gather information about
the problem and sketch out a solution.
During the implementation stage, the
planned design is expressed in a
programming language (code) that can
be made to run on a computing device.
During the review stage, the design
and implementation are checked for
adherence to program requirements,
correctness, and usability. This review
could lead to changes in implementation
and possibly design, which demonstrates
the iterative nature of the process. A
community is created by people who
share and provide feedback on one
another’s creations.

Crosscutting Concepts: Human–
Computer Interaction; System
Relationships

Connection Within Framework: K–2.
Computing Systems.Troubleshooting

People design meaningful solutions
for	others	by	defining	a	problem’s	
criteria and constraints, carefully
considering the diverse needs and
wants of the community, and testing
whether criteria and constraints
were met.

Development teams that employ
user-centered design create solutions
that can have a large societal impact,
such as an app that allows people with
speech difficulties to translate
hard-to-understand pronunciation into
understandable language. Use cases
and test cases are created and analyzed
to better meet the needs of users and to
evaluate whether criteria and constraints
are met. An example of a design
constraint is that mobile applications
must be optimized for small screens and
limited battery life.

Crosscutting Concepts: Human–
Computer Interaction; Abstraction

Connection Within Framework:
3–5.Impacts of Computing.Culture

Diverse teams can develop programs
with a broad impact through careful
review and by drawing on the
strengths of members in different
roles. Design decisions often involve
tradeoffs. The development of
complex programs is aided by
resources such as libraries and tools
to edit and manage parts of the
program. Systematic analysis is
critical for identifying the effects of
lingering bugs.

As programs grow more complex, the
choice of resources that aid program
development becomes increasingly
important. These resources include
libraries, integrated development
environments, and debugging tools.
Systematic analysis includes the
testing of program performance and
functionality, followed by end-user
testing. A common tradeoff in program
development is sometimes referred to
as “Fast/Good/Cheap: Pick Two”: one
can develop software quickly, with high
quality, or with little use of resources (for
example, money or number of people),
but the project manager may choose
only two of the three criteria.

Crosscutting Concepts: Human–
Computer Interaction; System
Relationships; Abstraction

Connection Within Framework: 9–12.
Computing Systems.Troubleshooting

Concepts — Impacts of Computing 28

Impacts of Computing

Overview: Computing affects many aspects of the world in both positive and negative ways at local, national, and global levels. Individuals and communities
influence computing through their behaviors and cultural and social interactions, and in turn, computing influences new cultural practices. An informed and
responsible person should understand the social implications of the digital world, including equity and access to computing.

By the end of Grade 2: By the end of Grade 5: By the end of Grade 8: By the end of Grade 12:

CULTURE
Overview: Computing influences culture—including belief systems, language, relationships, technology, and institutions—and culture shapes how people engage with
and access computing. In early grades, students learn how computing can be helpful and harmful. As they progress, students learn about tradeoffs associated with
computing and potential future impacts of computing on global societies.

Computing technology has positively
and negatively changed the way
people live and work. Computing
devices can be used for entertain-
ment and as productivity tools, and
they can affect relationships and
lifestyles.

Computing devices, such as fitness
trackers, can motivate a more active
lifestyle by monitoring physical activity.
On the other hand, passively consuming
media from computing devices may lead
to a more sedentary lifestyle. In the past,
the most popular form of communica-
tion was to send mail via the postal
service. Now, more people send emails
or text messages.

Crosscutting Concept: Human–
Computer Interaction

Connection Within Framework:
K–2.Data and Analysis.Inference
and Models

The	development	and	modification	of	
computing technology is driven by
people’s needs and wants and can
affect groups differently. Computing
technologies	influence,	and	are	
influenced	by,	cultural	practices.

New computing technology is created
and existing technologies are modified
to increase their benefits (for example,
Internet search recommendations),
decrease their risks (for example,
autonomous cars), and meet societal
demands (for example, smartphone
apps). Increased Internet access and
speed have allowed people to share
cultural information but have also affect-
ed the practice of traditional cultural
customs.

Crosscutting Concepts: Human–
Computer Interaction; System
Relationships

Connections Within Framework: K–2.
Algorithms and Programming. Program
Development; 6–8.Computing Systems.
Devices; 6–8.Algorithms and Program-
ming.Program Development

Advancements in computing technol-
ogy change people’s everyday
activities. Society is faced with
tradeoffs due to the increasing
globalization and automation that
computing brings.

The effects of globalization, such as the
sharing of information and cultural
practices and the resulting cultural
homogeneity, are increasingly possible
because of computing. Globalization,
coupled with the automation of the
production of goods, allows access to
labor that is less expensive and creates
jobs that can easily move across
national boundaries. Online piracy has
increased because of information
access that traverses national boundar-
ies and varying legal systems.

Crosscutting Concepts: Human–
Computer Interaction; System
Relationships

Connection Within Framework: 6–8.
Data and Analysis.Inference and Models

The design and use of computing
technologies and artifacts can
improve, worsen, or maintain
inequitable access to information
and opportunities.

While many people have direct access
to computing throughout their day,
many others are still underserved or
simply do not have access. Some of
these challenges are related to the
design of computing technologies, as in
the case of technologies that are
difficult for senior citizens and people
with physical disabilities to use. Other
equity deficits, such as minimal expo-
sure to computing, access to education,
and training opportunities, are related
to larger, systemic problems in society.

Crosscutting Concepts: Human–
Computer Interaction; System
Relationships

Connection Within Framework: 9–12.
Computing Systems.Devices

Concepts — Impacts of Computing 29

SOCIAL INTERACTIONS
Overview: Computing can support new ways of connecting people, communicating information, and expressing ideas. In early grades, students learn that
computing can connect people and support interpersonal communication. As they progress, students learn how the social nature of computing affects institutions
and careers in various sectors.

Computing has positively and
negatively changed the way people
communicate. People can have
access to information and each other
instantly, anywhere, and at any time,
but they are at the risk of cyberbully-
ing and reduced privacy.

Online communication facilitates
positive interactions, such as sharing
ideas with many people, but the public
and anonymous nature of online
communication also allows intimidating
and inappropriate behavior in the form
of cyberbullying. Privacy should be
considered when posting information
online; such information can persist for
a long time and be accessed by others,
even unintended viewers.

Crosscutting Concepts: Human–
Computer Interaction; Privacy and
Security

Connections Within Framework: K–2.
Data and Analysis.Storage; K–2.Data
and Analysis.Visualization and
Transformation

Computing technology allows for
local and global collaboration. By
facilitating communication and
innovation,	computing	influences	
many social institutions such as family,
education, religion, and the economy.

People can work in different places and
at different times to collaborate and
share ideas when they use technologies
that reach across the globe. These
social interactions affect how local and
global groups interact with each other,
and alternatively, these interactions can
change the nature of groups. For
example, a class can discuss ideas in
the same school or in another nation
through interactive webinars.

Crosscutting Concepts: System
Relationships; Human–Computer
Interaction

Connection Within Framework: K–2.
Networks and the Internet.Network
Communication and Organization

People can organize and engage
around issues and topics of interest
through various communication
platforms enabled by computing,
such as social networks and media
outlets. These interactions allow
issues to be examined using multiple
viewpoints from a diverse audience.

Social networks can play a large role in
social and political movements by
allowing individuals to share ideas and
opinions about common issues while
engaging with those who have different
opinions. Computing provides a rich
environment for discourse but may
result in people considering very limited
viewpoints from a limited audience.

Crosscutting Concepts: System
Relationships; Human–Computer
Interaction

Connections Within Framework: 3–5.
Data and Analysis.Visualization and
Transformation; 9–12.Data and Analysis.
Visualization and Transformation

Many aspects of society, especially
careers, have been affected by the
degree of communication afforded by
computing. The increased connectivi-
ty between people in different
cultures	and	in	different	career	fields	
has changed the nature and content
of many careers.

Careers have evolved, and new careers
have emerged. For example, social
media managers take advantage of
social media platforms to guide the
presence of a product or company and
increase interaction with their audience.
Global connectivity has also changed
how teams in different fields, such as
computer science and biology, work
together. For example, the online
genetic database made available by the
Human Genome Project, the algorithms
required to analyze the data, and the
ability for scientists around the world to
share information have accelerated the
pace of medical discoveries and led to
the new field of computational biology.

Crosscutting Concepts: System
Relationships; Human–Computer
Interaction

Connection Within Framework: 9–12.
Networks and the Internet.Network
Communication and Organization

Concepts — Impacts of Computing 30

SAFETY, LAW, AND ETHICS
Overview: Legal and ethical considerations of using computing devices influence behaviors that can affect the safety and security of individuals. In early grades,
students learn the fundamentals of digital citizenship and appropriate use of digital media. As they progress, students learn about the legal and ethical issues that
shape computing practices.

People use computing technology in
ways that can help or hurt themselves
or others. Harmful behaviors, such as
sharing private information and
interacting with strangers, should be
recognized and avoided.

Using computers comes with a level of
responsibility, such as not sharing login
information, keeping passwords private,
and logging off when finished. Rules
guiding interactions in the world, such
as “stranger danger,” apply to online
environments as well.

Crosscutting Concept: Privacy and
Security

Connection Within Framework: K–2.
Networks and the Internet.Cybersecurity

Ethical complications arise from
the opportunities provided by
computing. The ease of sending and
receiving copies of media on the
Internet, such as video, photos, and
music, creates the opportunity for
unauthorized use, such as online
piracy, and disregard of copyrights,
such as lack of attribution.

Online piracy, the illegal copying of
materials, is facilitated by the ability to
make identical-quality copies of digital
media with little effort. Other topics
related to copyright are plagiarism, fair
use, and properly citing online sources.
Knowledge of specific copyright laws is
not an expectation at this level.

Crosscutting Concepts: System
Relationships; Privacy and Security

Connection Within Framework: 3–5.
Networks and the Internet.Cybersecurity

There are tradeoffs between allowing
information to be public and keeping
information private and secure.
People can be tricked into revealing
personal information when more
public information is available about
them online.

Social engineering is based on
tricking people into breaking security
procedures and can be thwarted by
being aware of various kinds of attacks,
such as emails with false information
and phishing. Security attacks often
start with personal information that is
publicly available online. All users
should be aware of the personal
information, especially financial
information, that is stored on the
websites they use. Protecting personal
online information requires authentica-
tion measures that can often make it
harder for authorized users to access
information.

Crosscutting Concepts: Privacy and
Security; Communication and
Coordination

Connection Within Framework: 6–8.
Networks and the Internet.Cybersecurity

Laws govern many aspects of
computing, such as privacy, data,
property, information, and identity.
These	laws	can	have	beneficial	and	
harmful effects, such as expediting or
delaying advancements in computing
and protecting or infringing upon
people’s rights. International
differences in laws and ethics have
implications for computing.

Legal issues in computing, such as
those related to the use of the Internet,
cover many areas of law, reflect an
evolving technological field, and can
involve tradeoffs. For examples, laws
that mandate the blocking of some
file-sharing websites may reduce online
piracy but can restrict the right to
freedom of information. Firewalls can
be used to block harmful viruses and
malware but can also be used for media
censorship. Access to certain websites,
like social networking sites, may vary
depending on a nation’s laws and may
be blocked for political purposes.

Crosscutting Concepts: System
Relationships; Privacy and Security;
Abstraction

Connection Within Framework: 9–12.
Data and Analysis.Collection

