
V I E W B Y P R O G R E S S I O N

CC BY-NC-SA 4.0. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/
Authorization to reproduce this report in whole or in part is granted. Examples of programs and resources are provided for the reader’s convenience and do not represent an endorsement.

Suggested citation: K–12 Computer Science Framework. (2016). Framework view by progression. Retrieved from http://www.k12cs.org

Suggested attribution: “The K–12 Computer Science Framework, led by the Association for Computing Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, and National Math and Science Initiative
in partnership with states and districts, informed the development of this work.”

How to refer to the concepts: [Grade Band].[Core Concept].[Subconcept]
Example: K–2.Algorithms and Programming.Program Development

How to refer to the practices: P[Practice Number].[Core Practice].[Practice Statement Number]
Example: P4.Developing and Using Abstractions.1

The Concepts and Practices of the K–12 Computer Science Framework

Core Concepts

1.	 Computing Systems
2.	 Networks and the Internet
3.	 Data and Analysis
4.	 Algorithms and Programming
5.	 Impacts of Computing

Core Practices

1.	 Fostering an Inclusive Computing Culture
2.	 Collaborating Around Computing
3.	 Recognizing and Defining Computational Problems
4.	 Developing and Using Abstractions
5.	 Creating Computational Artifacts
6.	 Testing and Refining Computational Artifacts
7.	 Communicating About Computing

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.k12cs.org

Practices	 1

Practices

Practice 1. Fostering an Inclusive Computing Culture

Overview: Building an inclusive and diverse computing culture requires strategies for incorporating perspectives
from people of different genders, ethnicities, and abilities. Incorporating these perspectives involves understanding
the personal, ethical, social, economic, and cultural contexts in which people operate. Considering the needs of
diverse users during the design process is essential to producing inclusive computational products.

By the end of Grade 12, students should be able to

1.	Include the unique perspectives of others and reflect on one’s own perspectives when designing and developing computational products.

At all grade levels, students should recognize that the choices people make when they create artifacts are based on personal interests, experiences, and

needs. Young learners should begin to differentiate their technology preferences from the technology preferences of others. Initially, students should be

presented with perspectives from people with different backgrounds, ability levels, and points of view. As students progress, they should independently

seek diverse perspectives throughout the design process for the purpose of improving their computational artifacts. Students who are well-versed in

fostering an inclusive computing culture should be able to differentiate backgrounds and skillsets and know when to call upon others, such as to seek out

knowledge about potential end users or intentionally seek input from people with diverse backgrounds.

2.	Address the needs of diverse end users during the design process to produce artifacts with broad accessibility and usability.

At any level, students should recognize that users of technology have different needs and preferences and that not everyone chooses to use, or is able

to use, the same technology products. For example, young learners, with teacher guidance, might compare a touchpad and a mouse to examine

differences in usability. As students progress, they should consider the preferences of people who might use their products. Students should be able to

evaluate the accessibility of a product to a broad group of end users, such as people with various disabilities. For example, they may notice that allowing

an end user to change font sizes and colors will make an interface usable for people with low vision. At the higher grades, students should become aware

of professionally accepted accessibility standards and should be able to evaluate computational artifacts for accessibility. Students should also begin to

identify potential bias during the design process to maximize accessibility in product design. For example, they can test an app and recommend to its

designers that it respond to verbal commands to accommodate users who are blind or have physical disabilities.

Practices	 2

3.	Employ self- and peer-advocacy to address bias in interactions, product design, and development methods.

After students have experience identifying diverse perspectives and including unique perspectives (P1.1), they should begin to employ self-advocacy

strategies, such as speaking for themselves if their needs are not met. As students progress, they should advocate for their peers when accommodations,

such as an assistive-technology peripheral device, are needed for someone to use a computational artifact. Eventually, students should regularly

advocate for both themselves and others.

Practice 2. Collaborating Around Computing

Overview: Collaborative computing is the process of performing a computational task by working in pairs and
on teams. Because it involves asking for the contributions and feedback of others, effective collaboration can lead
to better outcomes than working independently. Collaboration requires individuals to navigate and incorporate
diverse perspectives, conflicting ideas, disparate skills, and distinct personalities. Students should use collaborative
tools to effectively work together and to create complex artifacts.

By the end of Grade 12, students should be able to

1.	Cultivate working relationships with individuals possessing diverse perspectives, skills, and personalities.

At any grade level, students should work collaboratively with others. Early on, they should learn strategies for working with team members who possess

varying individual strengths. For example, with teacher support, students should begin to give each team member opportunities to contribute and to

work with each other as co-learners. Eventually, students should become more sophisticated at applying strategies for mutual encouragement and

support. They should express their ideas with logical reasoning and find ways to reconcile differences cooperatively. For example, when they disagree,

they should ask others to explain their reasoning and work together to make respectful, mutual decisions. As they progress, students should use

methods for giving all group members a chance to participate. Older students should strive to improve team efficiency and effectiveness by regularly

evaluating group dynamics. They should use multiple strategies to make team dynamics more productive. For example, they can ask for the opinions of

quieter team members, minimize interruptions by more talkative members, and give individuals credit for their ideas and their work.

Practices	 3

2.	Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.

After students have had experience cultivating working relationships within teams (P2.1), they should gain experience working in particular team roles.

Early on, teachers may help guide this process by providing collaborative structures. For example, students may take turns in different roles on the

project, such as note taker, facilitator, or “driver” of the computer. As students progress, they should become less dependent on the teacher assigning

roles and become more adept at assigning roles within their teams. For example, they should decide together how to take turns in different roles.

Eventually, students should independently organize their own teams and create common goals, expectations, and equitable workloads. They should also

manage project workflow using agendas and timelines and should evaluate workflow to identify areas for improvement.

3.	Solicit and incorporate feedback from, and provide constructive feedback to, team members and other stakeholders.

At any level, students should ask questions of others and listen to their opinions. Early on, with teacher scaffolding, students should seek help and share

ideas to achieve a particular purpose. As they progress in school, students should provide and receive feedback related to computing in constructive

ways. For example, pair programming is a collaborative process that promotes giving and receiving feedback. Older students should engage in active

listening by using questioning skills and should respond empathetically to others. As they progress, students should be able to receive feedback from

multiple peers and should be able to differentiate opinions. Eventually, students should seek contributors from various environments. These contributors

may include end users, experts, or general audiences from online forums.

4.	Evaluate and select technological tools that can be used to collaborate on a project.

At any level, students should be able to use tools and methods for collaboration on a project. For example, in the early grades, students could

collaboratively brainstorm by writing on a whiteboard. As students progress, they should use technological collaboration tools to manage teamwork,

such as knowledge-sharing tools and online project spaces. They should also begin to make decisions about which tools would be best to use and when

to use them. Eventually, students should use different collaborative tools and methods to solicit input from not only team members and classmates but

also others, such as participants in online forums or local communities.

Practices	 4

Practice 3. Recognizing and Defining Computational Problems

Overview: The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that
develops over time and is central to computing. Solving a problem with a computational approach requires defining
the problem, breaking it down into parts, and evaluating each part to determine whether a computational solution
is appropriate.

By the end of Grade 12, students should be able to

1.	Identify complex, interdisciplinary, real-world problems that can be solved computationally.

At any level, students should be able to identify problems that have been solved computationally. For example, young students can discuss a technology

that has changed the world, such as email or mobile phones. As they progress, they should ask clarifying questions to understand whether a problem or

part of a problem can be solved using a computational approach. For example, before attempting to write an algorithm to sort a large list of names,

students may ask questions about how the names are entered and what type of sorting is desired. Older students should identify more complex

problems that involve multiple criteria and constraints. Eventually, students should be able to identify real-world problems that span multiple disciplines,

such as increasing bike safety with new helmet technology, and can be solved computationally.

2.	Decompose complex real-world problems into manageable subproblems that could integrate existing solutions or procedures.

At any grade level, students should be able to break problems down into their component parts. In the early grade levels, students should focus on

breaking down simple problems. For example, in a visual programming environment, students could break down (or decompose) the steps needed to

draw a shape. As students progress, they should decompose larger problems into manageable smaller problems. For example, young students may think

of an animation as multiple scenes and thus create each scene independently. Students can also break down a program into subgoals: getting input from

the user, processing the data, and displaying the result to the user. Eventually, as students encounter complex real-world problems that span multiple

disciplines or social systems, they should decompose complex problems into manageable subproblems that could potentially be solved with programs or

procedures that already exist. For example, students could create an app to solve a community problem that connects to an online database through an

application programming interface (API).

Practices	 5

3.	Evaluate whether it is appropriate and feasible to solve a problem computationally.

After students have had some experience breaking problems down (P3.2) and identifying subproblems that can be solved computationally (P3.1), they

should begin to evaluate whether a computational solution is the most appropriate solution for a particular problem. For example, students might

question whether using a computer to determine whether someone is telling the truth would be advantageous. As students progress, they should

systematically evaluate the feasibility of using computational tools to solve given problems or subproblems, such as through a cost-benefit analysis.

Eventually, students should include more factors in their evaluations, such as how efficiency affects feasibility or whether a proposed approach raises

ethical concerns.

Practice 4. Developing and Using Abstractions

Overview: Abstractions are formed by identifying patterns and extracting common features from specific examples
to create generalizations. Using generalized solutions and parts of solutions designed for broad reuse simplifies the
development process by managing complexity.

By the end of Grade 12, students should be able to

1.	Extract common features from a set of interrelated processes or complex phenomena.

Students at all grade levels should be able to recognize patterns. Young learners should be able to identify and describe repeated sequences in data

or code through analogy to visual patterns or physical sequences of objects. As they progress, students should identify patterns as opportunities for

abstraction, such as recognizing repeated patterns of code that could be more efficiently implemented as a loop. Eventually, students should extract

common features from more complex phenomena or processes. For example, students should be able to identify common features in multiple

segments of code and substitute a single segment that uses variables to account for the differences. In a procedure, the variables would take the form

of parameters. When working with data, students should be able to identify important aspects and find patterns in related data sets such as crop output,

fertilization methods, and climate conditions.

Practices	 6

2.	Evaluate existing technological functionalities and incorporate them into new designs.

At all levels, students should be able to use well-defined abstractions that hide complexity. Just as a car hides operating details, such as the mechanics

of the engine, a computer program’s “move” command relies on hidden details that cause an object to change location on the screen. As they progress,

students should incorporate predefined functions into their designs, understanding that they do not need to know the underlying implementation

details of the abstractions that they use. Eventually, students should understand the advantages of, and be comfortable using, existing functionalities

(abstractions) including technological resources created by other people, such as libraries and application programming interfaces (APIs). Students should

be able to evaluate existing abstractions to determine which should be incorporated into designs and how they should be incorporated. For example,

students could build powerful apps by incorporating existing services, such as online databases that return geolocation coordinates of street names or

food nutrition information.

3.	Create modules and develop points of interaction that can apply to multiple situations and reduce complexity.

After students have had some experience identifying patterns (P4.1), decomposing problems (P3.2), using abstractions (P4.2), and taking advantage of

existing resources (P4.2), they should begin to develop their own abstractions. As they progress, students should take advantage of opportunities to

develop generalizable modules. For example, students could write more efficient programs by designing procedures that are used multiple times in the

program. These procedures can be generalized by defining parameters that create different outputs for a wide range of inputs. Later on, students should

be able to design systems of interacting modules, each with a well-defined role, that coordinate to accomplish a common goal. Within an object-oriented

programming context, module design may include defining the interactions among objects. At this stage, these modules, which combine both data and

procedures, can be designed and documented for reuse in other programs. Additionally, students can design points of interaction, such as a simple user

interface, either text or graphical, that reduces the complexity of a solution and hides lower-level implementation details.

4.	Model phenomena and processes and simulate systems to understand and evaluate potential outcomes.

Students at all grade levels should be able to represent patterns, processes, or phenomena. With guidance, young students can draw pictures to

describe a simple pattern, such as sunrise and sunset, or show the stages in a process, such as brushing your teeth. They can also create an animation

to model a phenomenon, such as evaporation. As they progress, students should understand that computers can model real-world phenomena, and

they should use existing computer simulations to learn about real-world systems. For example, they may use a preprogrammed model to explore how

parameters affect a system, such as how rapidly a disease spreads. Older students should model phenomena as systems, with rules governing the

interactions within the system. Students should analyze and evaluate these models against real-world observations. For example, students might

create a simple producer–consumer ecosystem model using a programming tool. Eventually, they could progress to creating more complex and

realistic interactions between species, such as predation, competition, or symbiosis, and evaluate the model based on data gathered from nature.

Practices	 7

Practice 5. Creating Computational Artifacts

Overview: The process of developing computational artifacts embraces both creative expression and the
exploration of ideas to create prototypes and solve computational problems. Students create artifacts that are
personally relevant or beneficial to their community and beyond. Computational artifacts can be created by
combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts
include programs, simulations, visualizations, digital animations, robotic systems, and apps.

By the end of Grade 12, students should be able to

1.	Plan the development of a computational artifact using an iterative process that includes reflection on and modification of the plan, taking into account
key features, time and resource constraints, and user expectations.

At any grade level, students should participate in project planning and the creation of brainstorming documents. The youngest students may do so with

the help of teachers. With scaffolding, students should gain greater independence and sophistication in the planning, design, and evaluation of artifacts.

As learning progresses, students should systematically plan the development of a program or artifact and intentionally apply computational techniques,

such as decomposition and abstraction, along with knowledge about existing approaches to artifact design. Students should be capable of reflecting on

and, if necessary, modifying the plan to accommodate end goals.

2.	Create a computational artifact for practical intent, personal expression, or to address a societal issue.

Students at all grade levels should develop artifacts in response to a task or a computational problem. At the earliest grade levels, students should be

able to choose from a set of given commands to create simple animated stories or solve pre-existing problems. Younger students should focus on

artifacts of personal importance. As they progress, student expressions should become more complex and of increasingly broader significance.

Eventually, students should engage in independent, systematic use of design processes to create artifacts that solve problems with social significance

by seeking input from broad audiences.

Practices	 8

3.	Modify an existing artifact to improve or customize it.

At all grade levels, students should be able to examine existing artifacts to understand what they do. As they progress, students should attempt to use

existing solutions to accomplish a desired goal. For example, students could attach a programmable light sensor to a physical artifact they have created

to make it respond to light. Later on, they should modify or remix parts of existing programs to develop something new or to add more advanced

features and complexity. For example, students could modify prewritten code from a single-player game to create a two-player game with slightly

different rules.

Practice 6. Testing and Refining Computational Artifacts

Overview: Testing and refinement is the deliberate and iterative process of improving a computational artifact.
This process includes debugging (identifying and fixing errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs and expectations of end users and improve the
performance, reliability, usability, and accessibility of artifacts.

By the end of Grade 12, students should be able to

1.	Systematically test computational artifacts by considering all scenarios and using test cases.

At any grade level, students should be able to compare results to intended outcomes. Young students should verify whether given criteria and

constraints have been met. As students progress, they should test computational artifacts by considering potential errors, such as what will happen if a

user enters invalid input. Eventually, testing should become a deliberate process that is more iterative, systematic, and proactive. Older students should

be able to anticipate errors and use that knowledge to drive development. For example, students can test their program with inputs associated with all

potential scenarios.

2.	Identify and fix errors using a systematic process.

At any grade level, students should be able to identify and fix errors in programs (debugging) and use strategies to solve problems with computing

systems (troubleshooting). Young students could use trial and error to fix simple errors. For example, a student may try reordering the sequence of

commands in a program. In a hardware context, students could try to fix a device by resetting it or checking whether it is connected to a network. As

Practices	 9

students progress, they should become more adept at debugging programs and begin to consider logic errors: cases in which a program works, but not

as desired. In this way, students will examine and correct their own thinking. For example, they might step through their program, line by line, to identify

a loop that does not terminate as expected. Eventually, older students should progress to using more complex strategies for identifying and fixing errors,

such as printing the value of a counter variable while a loop is running to determine how many times the loop runs.

3.	Evaluate and refine a computational artifact multiple times to enhance its performance, reliability, usability, and accessibility.

After students have gained experience testing (P6.2), debugging, and revising (P6.1), they should begin to evaluate and refine their computational

artifacts. As students progress, the process of evaluation and refinement should focus on improving performance and reliability. For example, students

could observe a robot in a variety of lighting conditions to determine that a light sensor should be less sensitive. Later on, evaluation and refinement

should become an iterative process that also encompasses making artifacts more usable and accessible (P1.2). For example, students can incorporate

feedback from a variety of end users to help guide the size and placement of menus and buttons in a user interface.

Practice 7. Communicating About Computing

Overview: Communication involves personal expression and exchanging ideas with others. In computer science,
students communicate with diverse audiences about the use and effects of computation and the appropriateness of
computational choices. Students write clear comments, document their work, and communicate their ideas through
multiple forms of media. Clear communication includes using precise language and carefully considering possible
audiences.

By the end of Grade 12, students should be able to

1.	Select, organize, and interpret large data sets from multiple sources to support a claim.

At any grade level, students should be able to refer to data when communicating an idea. Early on, students should, with guidance, present basic data

through the use of visual representations, such as storyboards, flowcharts, and graphs. As students progress, they should work with larger data sets

and organize the data in those larger sets to make interpreting and communicating it to others easier, such as through the creation of basic data

representations. Eventually, students should be able to select relevant data from large or complex data sets in support of a claim or to communicate the

information in a more sophisticated manner.

Practices	 10

2.	Describe, justify, and document computational processes and solutions using appropriate terminology consistent with the intended audience and
purpose.

At any grade level, students should be able to talk about choices they make while designing a computational artifact. Early on, they should use language

that articulates what they are doing and identifies devices and concepts they are using with correct terminology (e.g., program, input, and debug).

Younger students should identify the goals and expected outcomes of their solutions. Along the way, students should provide documentation for end

users that explains their artifacts and how they function, and they should both give and receive feedback. For example, students could provide a project

overview and ask for input from users. As students progress, they should incorporate clear comments in their product and document their process using

text, graphics, presentations, and demonstrations.

3.	Articulate ideas responsibly by observing intellectual property rights and giving appropriate attribution.

All students should be able to explain the concepts of ownership and sharing. Early on, students should apply these concepts to computational ideas

and creations. They should identify instances of remixing, when ideas are borrowed and iterated upon, and give proper attribution. They should also

recognize the contributions of collaborators. Eventually, students should consider common licenses that place limitations or restrictions on the use of

computational artifacts. For example, a downloaded image may have restrictions that prohibit modification of an image or using it for commercial

purposes.

Concepts — Computing Systems	 11

Concepts

Computing Systems

Overview: People interact with a wide variety of computing devices that collect, store, analyze, and act upon information in ways that can affect human capabilities
both positively and negatively. The physical components (hardware) and instructions (software) that make up a computing system communicate and process
information in digital form. An understanding of hardware and software is useful when troubleshooting a computing system that does not work as intended.

DEVICES
Overview: Many everyday objects contain
computational components that sense and act on
the world. In early grades, students learn features
and applications of common computing devices.
As they progress, students learn about connected
systems and how the interaction between humans
and devices influences design decisions.

HARDWARE AND SOFTWARE
Overview: Computing systems use hardware and
software to communicate and process information
in digital form. In early grades, students learn how
systems use both hardware and software to
represent and process information. As they
progress, students gain a deeper understanding of
the interaction between hardware and software at
multiple levels within computing systems.

TROUBLESHOOTING
Overview: When computing systems do not work
as intended, troubleshooting strategies help
people solve the problem. In early grades, students
learn that identifying the problem is the first step
to fixing it. As they progress, students learn
systematic problem-solving processes and how to
develop their own troubleshooting strategies
based on a deeper understanding of how
computing systems work.

BY THE END OF GRADE 2:
People use computing devices to perform a
variety of tasks accurately and quickly. Computing
devices interpret and follow the instructions they
are given literally.

Computing devices can be used to do a number of
things, such as play music, create documents, and send
pictures. Computing devices are also very precise. For
example, computers can perform multiple complex
calculations much faster and with greater accuracy than
people. While people may diverge from instructions
given to them, computers will follow instructions
exactly as they are given, even if they do not achieve
the intended result.

Crosscutting Concept: Human–Computer Interaction

Connections Within Framework: K–2.Algorithms
and Programming.Control; K–2.Algorithms and
Programming.Modularity; 3–5.Algorithms and
Programming.Control

BY THE END OF GRADE 2:
A computing system is composed of hardware
and software. Hardware consists of physical
components, while software provides instructions for
the system. These instructions are represented in a
form that a computer can understand.

Examples of hardware include screens to display
information and buttons, keys, or dials to enter
information. Software applications are programs with
specific purposes, such as a web browser or game. A
person may use a mouse (hardware) to click on a button
displayed in a web browser (software) to navigate to a
new web page. Computing systems convert instructions,
such as “print,” “save,” or “crop,” into a special
language that the computer can understand. At this
level, understanding that computer information is
encoded is appropriate, but the explicit understanding
of “bits” is reserved for later grade levels.

Crosscutting Concept: Communication and Coordination

Connections Within Framework: K–2.Algorithms
and Programming.Algorithms; K–2.Algorithms and
Programming.Control

BY THE END OF GRADE 2:
Computing systems might not work as expected
because of hardware or software problems. Clearly
describing a problem is the first step toward finding
a solution.

Problems with computing systems have different
causes, such as hardware settings, programming
errors, or faulty connections to other devices.
Developmentally appropriate ways to solve problems
include debugging simple programs and seeking help
by clearly describing a problem (for example, “The
computer won’t turn on,” “The pointer on the screen
won’t move,” or “I lost the web page.”) Knowing
how to diagnose or troubleshoot a problem with a
computing system is not expected.

Crosscutting Concept: System Relationships

Connection Within Framework: 3–5.Algorithms and
Programming.Program Development

Table continued on next page

Concepts — Computing Systems	 12

BY THE END OF GRADE 5:
Computing devices may be connected to
other devices or components to extend their
capabilities, such as sensing and sending
information. Connections can take many forms,
such as physical or wireless. Together, devices and
components form a system of interdependent parts
that interact for a common purpose.

Computing devices often depend on other devices or
components. For example, a robot depends on a
physically attached light sensor to detect changes in
brightness, whereas the light sensor depends on the
robot for power. A smartphone can use wirelessly
connected headphones to send audio information, and
the headphones are useless without a music source.

Crosscutting Concepts: Communication and
Coordination; System Relationships

Connection Within Framework: 3–5.Networks and the
Internet.Network Communication and Organization

BY THE END OF GRADE 8:
The interaction between humans and computing
devices presents advantages, disadvantages, and
unintended consequences. The study of human–
computer interaction can improve the design of
devices and extend the abilities of humans.

Accessibility is an important consideration in the design
of any computing system. For example, assistive
devices provide capabilities such as scanning written
information and converting it to speech. The use of
computing devices also has potential consequences,
such as in the areas of privacy and security. For
example, GPS-enabled smartphones can provide
directions to a destination yet unintentionally allow a
person to be tracked for malicious purposes. Also, the
attention required to follow GPS directions can lead to
accidents due to distracted driving.

Crosscutting Concepts: Human–Computer Interaction;
Privacy and Security

Connection Within Framework: 3–5.Impacts of
Computing.Culture

BY THE END OF GRADE 5:
Hardware and software work together as a system
to accomplish tasks, such as sending, receiving,
processing, and storing units of information as bits.
Bits serve as the basic unit of data in computing
systems and can represent a variety of information.

For example, a photo filter application (software) works
with a camera (hardware) to produce a variety of effects
that change the appearance of an image. This image
is transmitted and stored as bits, or binary digits,
which are commonly represented as 0s and 1s. All
information, including instructions, is encoded as bits.
Knowledge of the inner workings of hardware and
software, number systems such as binary or
hexadecimal, and how bits are represented in
physical media are not priorities at this level.

Crosscutting Concepts: Communication and
Coordination; Abstraction

Connection Within Framework: 3–5.Data and
Analysis.Storage

BY THE END OF GRADE 8:
Hardware and software determine a computing
system’s capability to store and process information.
The design or selection of a computing system
involves multiple considerations and potential
tradeoffs, such as functionality, cost, size, speed,
accessibility, and aesthetics.

The capability of a computing system is determined
by the processor speed, storage capacity, and data
transmission speed, as well as other factors. Selecting
one computing system over another involves balancing
a number of tradeoffs. For example, selecting a faster
computer with more memory involves the tradeoffs of
speed and cost. Choosing one operating system over
another involves the tradeoff of capability and
compatibility, such as which apps can be installed or
which devices can be connected. Designing a robot
requires choosing both hardware and software and
may involve a tradeoff between the potential for
customization and ease of use. The use of a device
that connects wirelessly through a Bluetooth
connection versus a device that connects physically

BY THE END OF GRADE 5:
Computing systems share similarities, such as the
use of power, data, and memory. Common trouble-
shooting strategies, such as checking that power
is available, checking that physical and wireless
connections are working, and clearing out the
working memory by restarting programs or devices,
are effective for many systems.

Although computing systems may vary, common
troubleshooting strategies can be used on them, such
as checking connections and power or swapping a
working part in place of a potentially defective part.
Rebooting a machine is commonly effective because it
resets the computer. Because computing devices are
composed of an interconnected system of hardware
and software, troubleshooting strategies may need to
address both.

Crosscutting Concepts: System Relationships;
Abstraction

Connection Within Framework: 3–5.Networks and the
Internet.Network Communication and Organization

BY THE END OF GRADE 8:
Comprehensive troubleshooting requires
knowledge of how computing devices and compo-
nents work and interact. A systematic process will
identify the source of a problem, whether within a
device or in a larger system of connected devices.

Just as pilots use checklists to troubleshoot problems
with aircraft systems, people can use a similar,
structured process to troubleshoot problems with
computing systems and ensure that potential solutions
are not overlooked. Because a computing device may
interact with interconnected devices within a system,
problems may not be due to the specific computing
device itself but to devices connected to it. Examples
of system components that may need troubleshooting
are physical and wireless connections, peripheral
equipment, and network hardware. Strategies for
troubleshooting a computing system and debugging
a program include some problem-solving steps that
are similar.

Table continued on next page

Table continued from previous page

Concepts — Computing Systems	 13

Table continued from previous page

BY THE END OF GRADE 12:
Computing devices are often integrated with other
systems, including biological, mechanical, and social
systems. These devices can share data with one
another. The usability, dependability, security, and
accessibility of these devices, and the systems they
are integrated with, are important considerations in
their design as they evolve.

A medical device can be embedded inside a person
to monitor and regulate his or her health, a hearing aid
(a type of assistive device) can filter out certain
frequencies and magnify others, a monitoring device
installed in a motor vehicle can track a person’s driving
patterns and habits, and a facial recognition device can
be integrated into a security system to identify a
person. The devices embedded in everyday objects,
vehicles, and buildings allow them to collect and
exchange data, creating a network (e.g., Internet of
Things). The creation of integrated or embedded
systems is not an expectation at this level.

Crosscutting Concepts: System Relationships;
Human–Computer Interaction; Privacy and Security

Connections Within Framework: 9–12.Networks
and the Internet.Network Communication and
Organization; 9–12.Data and Analysis.Collection;
9–12.Impacts of Computing.Culture

through a USB connection involves a tradeoff between
mobility and the need for an additional power source
for the wireless device.

Crosscutting Concepts: System Relationships;
Communication and Coordination

Connection Within Framework: 6–8.Data and
Analysis.Collection.

BY THE END OF GRADE 12:
Levels of interaction exist between the hardware,
software, and user of a computing system. The most
common levels of software that a user interacts with
include system software and applications. System
software controls the flow of information between
hardware components used for input, output,
storage, and processing.

At its most basic level, a computer is composed of
physical hardware and electrical impulses. Multiple
layers of software are built upon the hardware and
interact with the layers above and below them to
reduce complexity. System software manages a
computing device’s resources so that software can
interact with hardware. For example, text editing
software interacts with the operating system to receive
input from the keyboard, convert the input to bits for
storage, and interpret the bits as readable text to
display on the monitor. System software is used on
many different types of devices, such as smart TVs,
assistive devices, virtual components, cloud
components, and drones. Knowledge of specific,
advanced terms for computer architecture, such as
BIOS, kernel, or bus, is not expected at this level.

Crosscutting Concepts: Abstraction; Communication
and Coordination; System Relationships

Connections Within Framework: 9–12.Networks
and the Internet.Network Communication and
Organization; 9–12.Algorithms and Programming.
Variables; 9–12.Algorithms and Programming.Modularity

Crosscutting Concepts: System Relationships;
Abstraction

Connection Within Framework: 6–8.Algorithms and
Programming.Algorithms

BY THE END OF GRADE 12:
Troubleshooting complex problems involves the
use of multiple sources when researching,
evaluating, and implementing potential solutions.
Troubleshooting also relies on experience, such as
when people recognize that a problem is similar to
one they have seen before or adapt solutions that
have worked in the past.

Troubleshooting information may come from external
sources, such as user manuals, online technical forums,
or manufacturer websites. Distinguishing between
reliable and unreliable sources is important. Examples
of complex troubleshooting strategies include
resolving connectivity problems, adjusting system
configurations and settings, ensuring hardware and
software compatibility, and transferring data from one
device to another.

Crosscutting Concepts: Abstraction; System
Relationships

Connection Within Framework: 9–12.Algorithms and
Programming.Program Development

Concepts — Networks and the Internet	 14

Networks and the Internet

Overview: Computing devices typically do not operate in isolation. Networks connect computing devices to share information and resources and are an increasingly
integral part of computing. Networks and communication systems provide greater connectivity in the computing world by providing fast, secure communication and
facilitating innovation.

NETWORK COMMUNICATION AND ORGANIZATION
Overview: Computing devices communicate with each other across
networks to share information. In early grades, students learn that
computers connect them to other people, places, and things around the
world. As they progress, students gain a deeper understanding of how
information is sent and received across different types of networks.

CYBERSECURITY
Overview: Transmitting information securely across networks requires
appropriate protection. In early grades, students learn how to protect their
personal information. As they progress, students learn increasingly complex
ways to protect information sent across networks.

BY THE END OF GRADE 2:
Computer networks can be used to connect people to other people, places,
information, and ideas. The Internet enables people to connect with others
worldwide through many different points of connection.

Small, wireless devices, such as cell phones, communicate with one another
through a series of intermediary connection points, such as cellular towers. This
coordination among many computing devices allows a person to voice call a
friend or video chat with a family member. Details about the connection points are
not expected at this level.

Crosscutting Concepts: Communication and Coordination; Human–Computer
Interaction

Connections Within Framework: K–2.Impacts of Computing.Social Interactions;
K–2.Data and Analysis.Collection; 3–5.Impacts of Computing.Social Interactions

BY THE END OF GRADE 5:
Information needs a physical or wireless path to travel to be sent and
received, and some paths are better than others. Information is broken into
smaller pieces, called packets, that are sent independently and reassembled
at the destination. Routers and switches are used to properly send packets
across paths to their destinations.

There are physical paths for communicating information, such as ethernet cables,
and wireless paths, such as Wi-Fi. Often, information travels on a combination of
physical and wireless paths; for example, wireless paths originate from a physical
connection point. The choice of device and type of connection will affect the path
information travels and the potential bandwidth (the capacity to transmit data or
bits in a given timeframe). Packets and packet switching (the method used to send

BY THE END OF GRADE 2:
Connecting devices to a network or the Internet provides great benefit, care must be
taken to use authentication measures, such as strong passwords, to protect devices
and information from unauthorized access.

Authentication is the ability to verify the identity of a person or entity. Usernames and
passwords, such as those on computing devices or Wi-Fi networks, provide a way of
authenticating a user’s identity. Because computers make guessing weak passwords easy,
strong passwords have characteristics that make them more time-intensive to break.

Crosscutting Concepts: Privacy and Security; Communication and Coordination

Connection Within Framework: K–2.Impacts of Computing.Safety, Law, and Ethics

BY THE END OF GRADE 5:
Information can be protected using various security measures. These measures can
be physical and/or digital.

An offline backup of data is useful in case of an online security breach. A variety of
software applications can monitor and address viruses and malware and alert users to
their presence. Security measures can be applied to a network or individual devices on a
network. Confidentiality refers to the protection of information from disclosure to
unauthorized individuals, systems, or entities.

Crosscutting Concept: Privacy and Security

Connection Within Framework: 3–5.Impacts of Computing.Safety, Law, and Ethics

Table continued on next page

Concepts — Networks and the Internet	 15

packets) are the foundation for further understanding of Internet concepts. At this
level, the priority is understanding the flow of information, rather than details of
how routers and switches work and how to compare paths.

Crosscutting Concept: Communication and Coordination

Connections Within Framework: 3–5.Computing Systems.Devices; 3–5.
Computing Systems.Troubleshooting

BY THE END OF GRADE 8:
Computers send and receive information based on a set of rules called
protocols. Protocols define how messages between computers are structured
and sent. Considerations of security, speed, and reliability are used to
determine the best path to send and receive data.

Protocols allow devices with different hardware and software to communicate, in
the way that people with different native languages may use a common language
for business. Protocols describe established commands and responses between
computers on a network, such as requesting data or sending an image. There are
many examples of protocols including TCP/IP (Transmission Control Protocol/
Internet Protocol) and HTTP (Hypertext Transfer Protocol), which serve as the
foundation for formatting and transmitting messages and data, including pages
on the World Wide Web. Routers also implement protocols to record the fastest
and most reliable paths by sending small packets as tests. The priority at this
grade level is understanding the purpose of protocols, while knowing details of
how specific protocols work is not expected.

Crosscutting Concepts: Communication and Coordination; Abstraction; Privacy
and Security

Connection Within Framework: 6–8.Data and Analysis.Storage

BY THE END OF GRADE 12:
Network topology is determined, in part, by how many devices can be
supported. Each device is assigned an address that uniquely identifies it on
the network. The scalability and reliability of the Internet are enabled by the
hierarchy and redundancy in networks.

Large-scale coordination occurs among many different machines across multiple
paths every time a web page is opened or an image is viewed online. Devices on
the Internet are assigned an Internet Protocol (IP) address to allow them to
communicate. The design decisions that directed the coordination among
systems composing the Internet also allowed for scalability and reliability.
Scalability is the capability of a network to handle a growing amount of work
or its potential to be enlarged to accommodate that growth.

BY THE END OF GRADE 8:
The information sent and received across networks can be protected from
unauthorized access and modification in a variety of ways, such as encryption to
maintain its confidentiality and restricted access to maintain its integrity. Security
measures to safeguard online information proactively address the threat of breaches
to personal and private data.

The integrity of information involves ensuring its consistency, accuracy, and trustworthiness.
For example, HTTPS (Hypertext Transfer Protocol Secure) is an example of a security
measure to protect data transmissions. It provides a more secure browser connection than
HTTP (Hypertext Transfer Protocol) because it encrypts data being sent between websites.
At this level, understanding the difference between HTTP and HTTPS, but not how the
technologies work, is important.

Crosscutting Concept: Privacy and Security

Connection Within Framework: 6–8.Impacts of Computing.Safety, Law, and Ethics

BY THE END OF GRADE 12:
Network security depends on a combination of hardware, software, and practices
that control access to data and systems. The needs of users and the sensitivity of
data determine the level of security implemented.

Security measures may include physical security tokens, two-factor authentication,
and biometric verification, but every security measure involves tradeoffs between the
accessibility and security of the system. Potential security problems, such as denial-of-
service attacks, ransomware, viruses, worms, spyware, and phishing, exemplify why
sensitive data should be securely stored and transmitted. The timely and reliable access to
data and information services by authorized users, referred to as availability, is ensured
through adequate bandwidth, backups, and other measures.

Crosscutting Concepts: Privacy and Security; System Relationships; Human–Computer
Interaction

Connection Within Framework: 9–12.Algorithms and Programming.Algorithms

Table continued on next page

Table continued from previous page

Concepts — Networks and the Internet	 16

Crosscutting Concepts: Communication and Coordination; Abstraction;
System Relationships

Connections Within Framework: 9–12.Computing Systems.Devices;
9–12.Computing Systems.Hardware and Software; 9–12.Impacts of Computing.
Social Interactions

Table continued from previous page

Concepts — Data and Analysis	 17

Data and Analysis

Overview: Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, so the need to process data effectively
is increasingly important. Data is collected and stored so that it can be analyzed to better understand the world and make more accurate predictions.

COLLECTION
Overview: Data is collected
 with both computational and
noncomputational tools and
processes. In early grades, students
learn how data about themselves
and their world is collected and
used. As they progress, students
learn the effects of collecting
data with computational and
automated tools.

STORAGE
Overview: Core functions of
computers are storing, representing,
and retrieving data. In early grades,
students learn how data is stored on
computers. As they progress,
students learn how to evaluate
different storage methods, including
the tradeoffs associated with
those methods.

VISUALIZATION AND
TRANSFORMATION
Overview: Data is transformed
throughout the process of collection,
digital representation, and analysis.
In early grades, students learn how
transformations can be used to
simplify data. As they progress,
students learn about more complex
operations to discover patterns
and trends and communicate them
to others.

INFERENCE AND MODELS
Overview: Data science is one
example where computer science
serves many fields. Computer
science and science use data to make
inferences, theories, or predictions
based upon the data collected from
users or simulations. In early grades,
students learn about the use of data
to make simple predictions. As they
progress, students learn how models
and simulations can be used to
examine theories and understand
systems and how predictions and
inferences are affected by more
complex and larger data sets.

Table continued on next page

Concepts — Data and Analysis	 18

BY THE END OF GRADE 2:
Everyday digital devices collect and
display data over time. The collection
and use of data about individuals and
the world around them is a routine
part of life and influences how
people live.

Many everyday objects, such as cell
phones, digital toys, and cars, can
contain tools (such as sensors) and
computers to collect and display data
from their surroundings.

Crosscutting Concept: Human–
Computer Interaction

Connection Within Framework:
K–2.Networks and the Internet.Network
Communication and Organization

BY THE END OF GRADE 5:
People select digital tools for the
collection of data based on what is
being observed and how the data will
be used. For example, a digital
thermometer is used to measure
temperature and a GPS sensor is
used to track locations.

There is a wide array of digital data
collection tools; however, only some are
appropriate for certain types of data.
Tools are chosen based upon the type of
measurement they use as well as the
type of data people wish to observe.
Data scientists use the term observation
to describe data collection, whether or
not a human is involved in the collection.

Crosscutting Concept: Abstraction

Connections Within Framework: 3–5.
Algorithms and Programming.Variables;
3–5.Algorithms and Programming.
Algorithms

BY THE END OF GRADE 2:
Computers store data that can
be retrieved later. Identical copies
of data can be made and stored
in multiple locations for a variety
of reasons, such as to protect
against loss.

For example, pictures can be stored on
a cell phone and viewed later, or
progress in a game can be saved and
continued later. The advantage of
recording data digitally, such as in
images or a spreadsheet, versus on a
physical space, such as a whiteboard, is
that old data (states of data collected
over time) can be easily retrieved,
copied, and stored in multiple places.
This is why personal information put
online can persist for a long time.
Understanding local versus online
storage is not expected at this level.

Crosscutting Concepts: System
Relationships; Privacy and Security

Connections Within Framework:
K–2.Impacts of Computing.Social
Interactions; K–2.Algorithms and
Programming.Variables

BY THE END OF GRADE 5:
Different software tools used
to access data may store the data
differently. The type of data being
stored and the level of detail
represented by that data affect the
storage requirements.

Music, images, video, and text require
different amounts of storage. Video will
often require more storage than music
or images alone because video
combines both. For example, two
pictures of the same object can require
different amounts of storage based

BY THE END OF GRADE 2:
Data can be displayed for communi-
cation in many ways. People use
computers to transform data into new
forms, such as graphs and charts.

Examples of displays include picture
graphs, bar charts, or histograms. A
data table that records a tally of
students’ favorite colors can be
displayed as a chart on a computer.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.
Impacts of Computing.Social Interactions

BY THE END OF GRADE 5:
People select aspects and subsets of
data to be transformed, organized,
clustered, and categorized to provide
different views and communicate
insights gained from the data.

Data is often sorted or grouped to
provide additional clarity. Data points
can be clustered by a number of
commonalities without a category label.
For example, a series of days might be
grouped by temperature, air pressure,
and humidity and later categorized as
fair, mild, or extreme weather. The same
data could be manipulated in different
ways to emphasize particular aspects or
parts of the data set. For example,
when working with a data set of popular
songs, data could be shown by genre
or artist. Simple data visualizations
include graphs and charts, infographics,
and ratios that represent statistical
characteristics of the data.

Crosscutting Concepts: Abstraction;
Human–Computer Interaction

Connection Within Framework: 6–8.
Impacts of Computing.Social Interactions

BY THE END OF GRADE 2:
Data can be used to make inferences or
predictions about the world. Inferences,
statements about something that
cannot be readily observed, are often
based on observed data. Predictions,
statements about future events, are
based on patterns in data and can be
made by looking at data visualizations,
such as charts and graphs.

Observations of people’s clothing
(jackets and coats) can be used to make
an inference about the weather (it is
cold outside). Patterns in past data can
be identified and extrapolated to make
predictions. For example, a person’s
lunch menu selection can be predicted
by using data on past lunch selections.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.
Impacts of Computing.Culture

BY THE END OF GRADE 5:
The accuracy of inferences and
predictions is related to how realistical-
ly data is represented. Many factors
influence the accuracy of inferences
and predictions, such as the amount
and relevance of data collected.

People use data to highlight or propose
cause-and-effect relationships and
predict outcomes. Basing inferences or
predictions on data does not guarantee
their accuracy; the data must be relevant
and of sufficient quantity. An example of
irrelevance is using eye color data when
inferring someone’s age. An example of
insufficient quantity is predicting the
outcome of an election by polling only a
few people.

Crosscutting Concept: System
Relationships

Table continued on next page

Table continued from previous page

Concepts — Data and Analysis	 19

BY THE END OF GRADE 8:
People design algorithms and tools
to automate the collection of data by
computers. When data collection is
automated, data is sampled and
converted into a form that a comput-
er can process. For example, data
from an analog sensor must be
converted into a digital form. The
method used to automate data
collection is influenced by the
availability of tools and the intended
use of the data.

Data can be collected from either
individual devices or systems. The
method of data collection (for example,
surveys versus sensor data) can affect
the accuracy and precision of the data.
Some types of data are more difficult to
collect than others. For example,
emotions must be subjectively evaluat-
ed on an individual basis and are thus
difficult to measure across a population.
Access to tools may be limited by
factors including cost, training, and
availability.

Crosscutting Concept: Human–
Computer Interaction

Connection Within Framework:
6–8.Computing Systems.Hardware
and Software

BY THE END OF GRADE 12:
Data is constantly collected or
generated through automated
processes that are not always evident,
raising privacy concerns. The different
collection methods and tools that are
used influence the amount and
quality of the data that is observed
and recorded.

upon their resolution. Different software
tools used to access and store data may
add additional data about the data
(metadata), which results in different
storage requirements. An image file is a
designed representation of a real-world
image and can be opened by either an
image editor or a text editor, but the
text editor does not know how to
translate the data into the image.
Understanding binary or 8-bit versus
16-bit representations is not expected
at this level.

Crosscutting Concept: System
Relationships

Connections Within Framework:
3–5.Computing Systems.Hardware
and Software; 3–5.Algorithms and
Programming.Variables

BY THE END OF GRADE 8:
Applications store data as a
representation. Representations occur
at multiple levels, from the arrange-
ment of information into organized
formats (such as tables in software)
to the physical storage of bits.
The software tools used to access
information translate the low-level
representation of bits into a form
understandable by people.

Computers can represent a variety of
data using discrete values at many
different levels, such as characters,
numbers, and bits. Text is represented
using character encoding standards like
UNICODE, which represent text as
numbers. All numbers and other types
of data are encoded and stored as bits
on a physical medium. Lossy and
lossless data formats are used to store
different levels of detail, but whenever
digital data is used to represent analog
measurements, such as temperature or

BY THE END OF GRADE 8:
Data can be transformed to remove
errors, highlight or expose relation-
ships, and/or make it easier for
computers to process.

The cleaning of data is an important
transformation for reducing noise and
errors. An example of noise would be
the first few seconds of a sample in
which an audio sensor collects
extraneous sound created by the user
positioning the sensor. Errors in survey
data are cleaned up to remove spurious
or inappropriate responses. An example
of a transformation that highlights a
relationship is representing two groups
(such as males and females) as percent-
ages of a whole instead of as individual
counts. Computational biologists use
compression algorithms to make
extremely large data sets of genetic
information more manageable and the
analysis more efficient.

Crosscutting Concept: Abstraction

Connection Within Framework: 6–8.
Algorithms and Programming.Algorithms

BY THE END OF GRADE 12:
People transform, generalize, simplify,
and present large data sets in
different ways to influence how other
people interpret and understand the
underlying information. Examples
include visualization, aggregation,
rearrangement, and application of
mathematical operations.

Visualizations, such as infographics, can
obscure data and positively or negative-
ly influence people’s views of the data.
People use software tools or program-
ming to create powerful, interactive
data visualizations and perform a range

BY THE END OF GRADE 8:
Computer models can be used to
simulate events, examine theories
and inferences, or make predictions
with either few or millions of data
points. Computer models are abstrac-
tions that represent phenomena and
use data and algorithms to emphasize
key features and relationships within a
system. As more data is automatically
collected, models can be refined.

Very large data sets require a model
for analysis; they are too large to be
analyzed by examining all of the
records. While individual users are
online, shopping websites and online
advertisements use personal data they
generate, compared to millions of
other users, to predict what they would
like and make recommendations.
A video-streaming website may
recommend videos based on models
generated from other users and based
upon their personal habits and prefer-
ences. The data that is collected about
an individual and potential inferences
made from that data can have
implications for privacy.

Crosscutting Concepts: Privacy and
Security; Abstraction

Connections Within Framework:
6–8.Algorithms and Programming.
Algorithms; 6–8.Impacts of
Computing.Culture

BY THE END OF GRADE 12:
The accuracy of predictions or
inferences depends upon the limita-
tions of the computer model and the
data the model is built upon. The
amount, quality, and diversity of data
and the features chosen can affect the
quality of a model and ability to

Table continued on next page

Table continued from previous page

Concepts — Data and Analysis	 20

Data can be collected and aggregated
across millions of people, even when
they are not actively engaging with
or physically near the data collection
devices. This automated and nonevi-
dent collection can raise privacy
concerns, such as social media sites
mining an account even when the user
is not online. Other examples include
surveillance video used in a store to
track customers for security or informa-
tion about purchase habits or the
monitoring of road traffic to change
signals in real time to improve road
efficiency without drivers being aware.
Methods and devices for collecting data
can differ by the amount of storage
required, level of detail collected, and
sampling rates. For example, ultrasonic
range finders are good at long
distances and are very accurate, as
compared to infrared range finders,
which are better for short distances.
Computer models and simulations
produce large amounts of data used
in analysis.

Crosscutting Concept: Privacy and
Security

Connections Within Framework: 9–12.
Computing Systems.Devices; 9–12.
Impacts of Computing.Safety, Law,
and Ethics

sound, information is lost. Representa-
tions, or file formats, can contain
metadata that is not always visible to
the average user. There are privacy
implications when files contain
metadata, such as the location
where a photograph was taken.

Crosscutting Concept: Abstraction

Connections Within Framework: 6–8.
Algorithms and Programming.Variables;
6–8.Networks and the Internet.Network
Communication and Organization

BY THE END OF GRADE 12:
Data can be composed of multiple
data elements that relate to one
another. For example, population
data may contain information about
age, gender, and height. People
make choices about how data
elements are organized and where
data is stored. These choices affect
cost, speed, reliability, accessibility,
privacy, and integrity.

A data model combines data elements
and describes the relationships among
the elements. Data models represent
choices made about which data
elements are available and feasible to
collect. Storing data locally may
increase security but decrease accessi-
bility. Storing data on a cloud-based,
redundant storage system may increase
accessibility but reduce security, as it
can be accessed online easily, even by
unauthorized users. Data redundancies
and backups are useful for restoring
data when integrity is compromised.

Crosscutting Concepts: System
Relationships; Privacy and Security;
Communication and Coordination

Connection Within Framework: 9–12.
Algorithms and Programming.Algorithms

of mathematical operations to
transform and analyze data. Examples
of mathematical operations include
those related to aggregation, such as
summing and averaging. The same data
set can be visualized or transformed to
support multiple sides of an issue.

Crosscutting Concepts: Abstraction;
Human–Computer Interaction

Connection Within Framework:
6–8.Impacts of Computing.Social
Interactions

understand a system. Predictions or
inferences are tested to validate
models.

Large data sets are used to make
models used for inference or
predictions, such as forecasting
earthquakes, traffic patterns, or the
results of car crashes. Larger quantities
and higher quality of collected data will
tend to improve the accuracy of
models. For example, using data from
1,000 car crashes would generally yield
a more accurate model than using data
from 100 crashes. Additionally, car
crashes provide a wide variety of data
points, such as impact speed, car make
and model, and passenger type, and
this data is useful in the development of
injury prevention measures.

Crosscutting Concepts: Abstraction;
Privacy and Security

Table continued from previous page

Concepts — Algorithms and Programming	 21

Algorithms and Programming

Overview: An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions
for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve
compelling problems. The development process to create meaningful and efficient programs involves choosing which information to use and how to process and
store it, breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.

ALGORITHMS
Overview: Algorithms are
designed to be carried out
by both humans and
computers. In early grades,
students learn about
age-appropriate algorithms
from the real world. As they
progress, students learn
about the development,
combination, and decompo-
sition of algorithms, as
well as the evaluation of
competing algorithms.

VARIABLES
Overview: Computer
programs store and
manipulate data using
variables. In early grades,
students learn that different
types of data, such as
words, numbers, or pictures,
can be used in different
ways. As they progress,
students learn about
variables and ways to
organize large collections of
data into data structures of
increasing complexity.

CONTROL
Overview: Control
structures specify the
order in which instructions
are executed within an
algorithm or program.
In early grades, students
learn about sequential
execution and simple
control structures. As they
progress, students expand
their understanding to
combinations of structures
that support complex
execution.

MODULARITY
Overview: Modularity
involves breaking down
tasks into simpler tasks and
combining simple tasks to
create something more
complex. In early grades,
students learn that
algorithms and programs
can be designed by breaking
tasks into smaller parts and
recombining existing
solutions. As they progress,
students learn about
recognizing patterns to
make use of general,
reusable solutions for
commonly occurring
scenarios and clearly
describing tasks in ways
that are widely usable.

PROGRAM
DEVELOPMENT
Overview: Programs are
developed through a
design process that is
often repeated until the
programmer is satisfied with
the solution. In early grades,
students learn how and why
people develop programs.
As they progress, students
learn about the tradeoffs in
program design associated
with complex decisions
involving user constraints,
efficiency, ethics, and
testing.

Table continued on next page

Concepts — Algorithms and Programming	 22

BY THE END OF GRADE 2:
People follow and create
processes as part of daily life.
Many of these processes can
be expressed as algorithms
that computers can follow.

Routines, such as morning
meeting, clean-up time, and
dismissal, are examples of
algorithms that are common in
many early elementary
classrooms. Other examples of
algorithms include making
simple foods, navigating a
classroom, and daily routines
like brushing teeth. Just as
people use algorithms to
complete daily routines, they
can program computers to use
algorithms to complete
different tasks. Algorithms are
commonly implemented using
a precise language that
computers can interpret.

Crosscutting Concept:
Abstraction

Connection Within Framework:
K–2.Computing Systems.
Hardware and Software

BY THE END OF GRADE 5:
Different algorithms can
achieve the same result.
Some algorithms are more
appropriate for a specific
context than others.

Different algorithms can be
used to tie shoes or decide
which path to take on the way
home from school. While the
end results may be similar,
they may not be the same:

BY THE END OF GRADE 2:
Information in the real
world can be represented
in computer programs.
Programs store and
manipulate data, such as
numbers, words, colors, and
images. The type of data
determines the actions and
attributes associated with it.

Different actions are available
for different kinds of informa-
tion. For example, sprites
(character images) can be
moved and turned, numbers
can be added or subtracted,
and pictures can be recolored
or cropped.

Crosscutting Concept:
Abstraction

Connection Within
Framework: K–2.Data and
Analysis.Storage

BY THE END OF GRADE 5:
Programming languages
provide variables, which are
used to store and modify
data. The data type deter-
mines the values and
operations that can be
performed on that data.

Variables are the vehicle
through which computer
programs store different types
of data. At this level, under-
standing how to use variables
is sufficient, without a fuller
understanding of the technical
aspects of variables (such as
identifiers and memory
locations). Data types vary by

BY THE END OF GRADE 2:
Computers follow precise
sequences of instructions
that automate tasks. Program
execution can also be
nonsequential by repeating
patterns of instructions and
using events to initiate
instructions.

Computers follow instructions
literally. Examples of sequenc-
es of instructions include steps
for drawing a shape or moving
a character across the screen.
An event, such as the press of
a button, can trigger an action.
Simple loops can be used to
repeat instructions. At this
level, distinguishing different
types of loops is not expected.

Crosscutting Concept:
Abstraction

Connections Within
Framework: K–2.Computing
Systems.Devices; K–2.
Computing Systems.
Hardware and Software

BY THE END OF GRADE 5:
Control structures, including
loops, event handlers, and
conditionals, are used to
specify the flow of execution.
Conditionals selectively
execute or skip instructions
under different conditions.

Different types of loops are
used to repeat instructions in
multiple ways depending on
the situation. Examples of
events include mouse clicks,
typing on the keyboard, and

BY THE END OF GRADE 2:
Complex tasks can be
broken down into simpler
instructions, some of which
can be broken down even
further. Likewise, instructions
can be combined to accom-
plish complex tasks.

Decomposition is the act of
breaking down tasks into
simpler tasks. An example of
decomposition is preparing for
a party: it involves inviting
guests, making food, and
setting the table. These tasks
can be broken down further.
For example, setting the table
involves laying a tablecloth,
folding napkins, and placing
utensils and plates on the
table. Another example is
breaking down the steps to
draw a polygon.

Composition, on the other
hand, is the combination of
smaller tasks into more
complex tasks. To build a city,
people build several houses, a
school, a store, etc. To create a
group art project, people can
paint or draw their favorite
ocean animal, then combine
them to create an ecosystem.

Crosscutting Concept: System
Relationships

Connection Within
Framework: K–2.Computing
Systems.Devices

BY THE END OF GRADE 5:
Programs can be broken
down into smaller parts to
facilitate their design,

BY THE END OF GRADE 2:
People develop programs
collaboratively and for a
purpose, such as expressing
ideas or addressing problems.

People work together to plan,
create, and test programs
within a context that is relevant
to the programmer and users.
Programming is used as a tool
to create products that reflect
a wide range of interests, such
as video games, interactive art
projects, and digital stories.

Crosscutting Concept:
Human–Computer Interaction

Connection Within
Framework: 3–5.Impacts of
Computing.Culture

BY THE END OF GRADE 5:
People develop programs
using an iterative process
involving design, implemen-
tation, and review. Design
often involves reusing existing
code or remixing other
programs within a communi-
ty. People continuously
review whether programs
work as expected, and they
fix, or debug, parts that do
not. Repeating these steps
enables people to refine and
improve programs.

Design, implementation, and
review can be further broken
down into additional stages
and may have different labels.
The design stage occurs
before writing code. This is a
planning stage in which the

Table continued on next page

Table continued from previous page

Concepts — Algorithms and Programming	 23

in the example of going home,
some paths could be faster,
slower, or more direct,
depending on varying factors,
such as available time or the
presence of obstacles (for
example, a barking dog).
Algorithms can be expressed
in noncomputer languages,
including natural language,
flowcharts, and pseudocode.

Crosscutting Concept:
Abstraction

Connection Within
Framework: 3–5.Data and
Analysis.Collection

BY THE END OF GRADE 8:
Algorithms affect how
people interact with comput-
ers and the way computers
respond. People design
algorithms that are generaliz-
able to many situations.
Algorithms that are readable
are easier to follow, test, and
debug.

Algorithms control what
recommendations a user may
get on a music-streaming
website, how a game re-
sponds to finger presses on a
touchscreen, and how informa-
tion is sent across the Internet.
An algorithm that is generaliz-
able to many situations can
produce different outputs,
based on a wide range of
inputs. For example, an
algorithm for a smart thermo-
stat may control the tempera-
ture based on the time of day,
how many people are at
home, and current electricity

programming language, but
many have types for numbers
and text. Examples of opera-
tions associated with those
types are multiplying numbers
and combining text. Some
visual, blocks-based languages
do not have explicitly declared
types but still have certain
operations that apply only to
particular types of data in a
program.

Crosscutting Concept:
Abstraction

Connection Within
Framework: 3–5.Data and
Analysis.Storage

BY THE END OF GRADE 8:
Programmers create vari-
ables to store data values of
selected types. A meaningful
identifier is assigned to each
variable to access and
perform operations on the
value by name. Variables
enable the flexibility to
represent different situations,
process different sets of
data, and produce varying
outputs.

At this level, students deepen
their understanding of
variables, including when and
how to declare and name new
variables. A variable is like a
container with a name, in
which the contents may
change, but the name
(identifier) does not. The
identifier makes keeping track
of the data that is stored
easier, especially if the data
changes. Naming conventions

collisions between objects.
Event handlers are sets of
commands that are tied to
specific events. Conditionals
represent decisions and are
composed of a Boolean
condition that specifies actions
based on whether the
condition evaluates to true or
false. Boolean logic and
operators (e.g., AND, OR,
NOT) can be used to specify
the appropriate groups of
instructions to execute under
various conditions.

Crosscutting Concepts:
Abstraction; Communication
and Coordination

Connection Within
Framework: K–2.Computing
Systems.Devices

BY THE END OF GRADE 8:
Programmers select and
combine control structures,
such as loops, event han-
dlers, and conditionals, to
create more complex
program behavior.

Conditional statements can
have varying levels of com-
plexity, including compound
and nested conditionals.
Compound conditionals
combine two or more condi-
tions in a logical relationship,
and nesting conditionals within
one another allows the result
of one conditional to lead to
another being evaluated. An
example of a nested condi-
tional structure is deciding
what to do based on the
weather outside. If it is sunny

implementation, and review.
Programs can also be
created by incorporating
smaller portions of programs
that have already been
created.

Decomposition facilitates
aspects of program develop-
ment, such as testing, by
allowing people to focus on
one piece at a time. Decom-
position also enables different
people to work on different
parts at the same time. An
example of decomposition at
this level is creating an
animation by separating a
story into different scenes. For
each scene, a background
needs to be selected, charac-
ters placed, and actions
programmed. The instructions
required to program each
scene may be similar to
instructions in other programs.

Crosscutting Concepts:
System Relationships;
Abstraction

BY THE END OF GRADE 8:
Programs use procedures to
organize code, hide imple-
mentation details, and make
code easier to reuse.
Procedures can be repur-
posed in new programs.
Defining parameters for
procedures can generalize
behavior and increase
reusability.

A procedure is a module (a
group of instructions within a
program) that performs a

programmers gather informa-
tion about the problem and
sketch out a solution. During
the implementation stage, the
planned design is expressed in
a programming language
(code) that can be made to run
on a computing device.
During the review stage, the
design and implementation
are checked for adherence to
program requirements,
correctness, and usability. This
review could lead to changes
in implementation and
possibly design, which
demonstrates the iterative
nature of the process. A
community is created by
people who share and provide
feedback on one another’s
creations.

Crosscutting Concepts:
Human–Computer Interaction;
System Relationships

Connection Within Framework:
K–2.Computing Systems.
Troubleshooting

BY THE END OF GRADE 8:
People design meaningful
solutions for others by
defining a problem’s criteria
and constraints, carefully
considering the diverse
needs and wants of the
community, and testing
whether criteria and con-
straints were met.

Development teams that
employ user-centered design
create solutions that can have
a large societal impact, such as
an app that allows people with

Table continued on next page

Table continued from previous page

Concepts — Algorithms and Programming	 24

consumption. The testing of
an algorithm requires the use
of inputs that reflect all
possible conditions to evaluate
its accuracy and robustness.

Crosscutting Concepts:
Human–Computer Interaction;
Abstraction

Connections Within
Framework: 6–8.Data and
Analysis.Inference and Models;
6–8.Computing Systems.
Troubleshooting; 6–8.Data and
Analysis.Visualization and
Transformation

BY THE END OF GRADE 12:
People evaluate and select
algorithms based on
performance, reusability, and
ease of implementation.
Knowledge of common
algorithms improves how
people develop software,
secure data, and store
information.

Some algorithms may be easier
to implement in a particular
programming language, work
faster, require less memory to
store data, and be applicable
in a wider variety of situations
than other algorithms. Algo-
rithms used to search and sort
data are common in a variety of
software applications. Encryp-
tion algorithms are used to
secure data, and compression
algorithms make data storage
more efficient. At this level,
analysis may involve simple
calculations of steps. Analysis
using sophisticated mathemati-
cal notation to classify

for identifiers, and thoughtful
choices of identifiers, improve
program readability.

The term variable is used
differently in programming
than the way it is commonly
used in mathematics: a
program variable refers to a
location in which a value is
stored, and the name used to
access the value is called the
identifier. A program variable
is assigned a value, and that
value may change throughout
the execution of the program.
Mathematicians typically do
not make a distinction
between a variable and the
variable name. A mathematics
variable often represents a set
of values for which the
statement containing the
variable is true.

Crosscutting Concept:
Abstraction

Connection Within
Framework: 6–8.Data and
Analysis.Storage

BY THE END OF GRADE 12:
Data structures are used to
manage program complexity.
Programmers choose data
structures based on function-
ality, storage, and perfor-
mance tradeoffs.

A list is a common type of data
structure that is used to
facilitate the efficient storage,
ordering, and retrieval of
values and various other
operations on its contents.
Tradeoffs are associated with

outside, I will further decide if I
want to ride my bike or go
running, but if it is not sunny
outside, I will decide whether
to read a book or watch TV.
Different types of control
structures can be combined
with one another, such as
loops and conditionals.
Different types of program-
ming languages implement
control structures in different
ways. For example, functional
programming languages
implement repetition using
recursive function calls instead
of loops. At this level, under-
standing implementation in
multiple languages is not
essential.

Crosscutting Concept:
Abstraction

BY THE END OF GRADE 12:
Programmers consider
tradeoffs related to imple-
mentation, readability, and
program performance when
selecting and combining
control structures.

Implementation includes the
choice of programming
language, which affects the
time and effort required to
create a program. Readability
refers to how clear the
program is to other program-
mers and can be improved
through documentation. The
discussion of performance is
limited to a theoretical
understanding of execution
time and storage require-
ments; a quantitative analysis
is not expected. Control

particular task. In this frame-
work, procedure is used as a
general term that may refer to
an actual procedure or a
method, function, or similar
concept in other programming
languages. Procedures are
invoked to repeat groups of
instructions. For example, a
procedure, such as one to
draw a circle, involves many
instructions, but all of them
can be invoked with one
instruction, such as “drawCir-
cle.” Procedures that are
defined with parameters are
generalizable to many
situations and will produce
different outputs based
on a wide range of inputs
(arguments).

Crosscutting Concepts:
Abstraction; System
Relationships

BY THE END OF GRADE 12:
Complex programs are
designed as systems of
interacting modules, each
with a specific role, coordi-
nating for a common overall
purpose. These modules can
be procedures within a
program; combinations of
data and procedures; or
independent, but interrelat-
ed, programs. Modules allow
for better management of
complex tasks.

Software applications require a
sophisticated approach to
design that uses a systems
perspective. For example,
object-oriented programming

speech difficulties to translate
hard-to-understand pronuncia-
tion into understandable
language. Use cases and test
cases are created and ana-
lyzed to better meet the needs
of users and to evaluate
whether criteria and con-
straints are met. An example
of a design constraint is that
mobile applications must be
optimized for small screens
and limited battery life.

Crosscutting Concepts:
Human–Computer Interaction;
Abstraction

Connection Within
Framework: 3–5.Impacts of
Computing.Culture

BY THE END OF GRADE 12:
Diverse teams can develop
programs with a broad
impact through careful
review and by drawing on
the strengths of members in
different roles. Design
decisions often involve
tradeoffs. The development
of complex programs is
aided by resources such as
libraries and tools to edit and
manage parts of the pro-
gram. Systematic analysis is
critical for identifying the
effects of lingering bugs.

As programs grow more
complex, the choice of
resources that aid program
development becomes
increasingly important. These
resources include libraries,
integrated development
environments, and debugging

Table continued on next page

Table continued from previous page

Concepts — Algorithms and Programming	 25

algorithm performance, such
as Big-O notation, is not
expected.

Crosscutting Concepts:
Abstraction; Privacy and
Security

Connections Within
Framework: 9–12.Data and
Analysis.Storage; 9–12.
Networks and the Internet.
Cybersecurity

choosing different types of
lists. Knowledge of advanced
data structures, such as stacks,
queues, trees, and hash tables,
is not expected. User-defined
types and object-oriented
programming are optional
concepts at this level.

Crosscutting Concepts:
Abstraction; System
Relationships

Connection Within
Framework: 6–8.Computing
Systems.Hardware and
Software

structures at this level may
include conditional state-
ments, loops, event handlers,
and recursion. Recursion is a
control technique in which a
procedure calls itself and is
appropriate when problems
can be expressed in terms of
smaller versions of themselves.
Recursion is an optional
concept at this level.

Crosscutting Concepts:
Abstraction; System
Relationships

decomposes programs into
modules called objects that
pair data with methods
(variables with procedures).
The focus at this level is
understanding a program as a
system with relationships
between modules. The choice
of implementation, such as
programming language or
paradigm, may vary.

Crosscutting Concepts:
System Relationships;
Abstraction

Connection Within
Framework: 9–12.Computing
Systems.Hardware and
Software

tools. Systematic analysis
includes the testing of
program performance and
functionality, followed by
end-user testing. A common
tradeoff in program develop-
ment is sometimes referred to
as “Fast/Good/Cheap: Pick
Two”: one can develop
software quickly, with high
quality, or with little use of
resources (for example, money
or number of people), but the
project manager may choose
only two of the three criteria.

Crosscutting Concepts:
Human–Computer Interaction;
System Relationships;
Abstraction

Connection Within
Framework: 9–12.Computing
Systems.Troubleshooting

Table continued from previous page

Concepts — Impacts of Computing	 26

Impacts of Computing

Overview: Computing affects many aspects of the world in both positive and negative ways at local, national, and global levels. Individuals and communities influ-
ence computing through their behaviors and cultural and social interactions, and in turn, computing influences new cultural practices. An informed and responsible
person should understand the social implications of the digital world, including equity and access to computing.

CULTURE
Overview: Computing influences culture—
including belief systems, language, relationships,
technology, and institutions—and culture shapes
how people engage with and access computing. In
early grades, students learn how computing can be
helpful and harmful. As they progress, students
learn about tradeoffs associated with computing
and potential future impacts of computing on
global societies.

SOCIAL INTERACTIONS
Overview: Computing can support new ways of
connecting people, communicating information,
and expressing ideas. In early grades, students
learn that computing can connect people and
support interpersonal communication. As they
progress, students learn how the social nature of
computing affects institutions and careers in
various sectors.

SAFETY, LAW, AND ETHICS
Overview: Legal and ethical considerations of
using computing devices influence behaviors that
can affect the safety and security of individuals.
In early grades, students learn the fundamentals
of digital citizenship and appropriate use of
digital media. As they progress, students learn
about the legal and ethical issues that shape
computing practices.

BY THE END OF GRADE 2:
Computing technology has positively and negatively
changed the way people live and work. Computing
devices can be used for entertainment and as
productivity tools, and they can affect relationships
and lifestyles.

Computing devices, such as fitness trackers, can
motivate a more active lifestyle by monitoring physical
activity. On the other hand, passively consuming media
from computing devices may lead to a more sedentary
lifestyle. In the past, the most popular form of
communication was to send mail via the postal service.
Now, more people send emails or text messages.

Crosscutting Concept: Human–Computer Interaction

Connection Within Framework: K–2.Data and Analysis.
Inference and Models

BY THE END OF GRADE 2:
Computing has positively and negatively changed
the way people communicate. People can have
access to information and each other instantly,
anywhere, and at any time, but they are at the risk of
cyberbullying and reduced privacy.

Online communication facilitates positive interactions,
such as sharing ideas with many people, but the public
and anonymous nature of online communication also
allows intimidating and inappropriate behavior in the
form of cyberbullying. Privacy should be considered
when posting information online; such information can
persist for a long time and be accessed by others, even
unintended viewers.

Crosscutting Concepts: Human–Computer Interaction;
Privacy and Security

Connections Within Framework: K–2.Data and
Analysis.Storage; K–2.Data and Analysis.Visualization
and Transformation

BY THE END OF GRADE 2:
People use computing technology in ways that
can help or hurt themselves or others. Harmful
behaviors, such as sharing private information
and interacting with strangers, should be recognized
and avoided.

Using computers comes with a level of responsibility,
such as not sharing login information, keeping
passwords private, and logging off when finished.
Rules guiding interactions in the world, such as
“stranger danger,” apply to online environments
as well.

Crosscutting Concept: Privacy and Security

Connection Within Framework: K–2.Networks and the
Internet.Cybersecurity

Table continued on next page

Concepts — Impacts of Computing	 27

BY THE END OF GRADE 5:
The development and modification of computing
technology is driven by people’s needs and wants
and can affect groups differently. Computing
technologies influence, and are influenced by,
cultural practices.

New computing technology is created and existing
technologies are modified to increase their benefits (for
example, Internet search recommendations), decrease
their risks (for example, autonomous cars), and meet
societal demands (for example, smartphone apps).
Increased Internet access and speed have allowed
people to share cultural information but have also
affected the practice of traditional cultural customs.

Crosscutting Concepts: Human–Computer Interaction;
System Relationships

Connections Within Framework: K–2.Algorithms and
Programming.Program Development; 6–8.Computing
Systems.Devices; 6–8.Algorithms and Programming.
Program Development

BY THE END OF GRADE 8:
Advancements in computing technology change
people’s everyday activities. Society is faced with
tradeoffs due to the increasing globalization and
automation that computing brings.

The effects of globalization, such as the sharing of
information and cultural practices and the resulting
cultural homogeneity, are increasingly possible
because of computing. Globalization, coupled with the
automation of the production of goods, allows access
to labor that is less expensive and creates jobs that
can easily move across national boundaries. Online
piracy has increased because of information access
that traverses national boundaries and varying
legal systems.

Crosscutting Concepts: Human–Computer Interaction;
System Relationships

Connection Within Framework: 6–8.Data and Analysis.
Inference and Models

BY THE END OF GRADE 5:
Computing technology allows for local and global
collaboration. By facilitating communication and
innovation, computing influences many social
institutions such as family, education, religion, and
the economy.

People can work in different places and at different
times to collaborate and share ideas when they use
technologies that reach across the globe. These social
interactions affect how local and global groups interact
with each other, and alternatively, these interactions
can change the nature of groups. For example, a class
can discuss ideas in the same school or in another
nation through interactive webinars.

Crosscutting Concepts: System Relationships; Human–
Computer Interaction

Connection Within Framework: K–2.Networks and the
Internet.Network Communication and Organization

BY THE END OF GRADE 8:
People can organize and engage around issues and
topics of interest through various communication
platforms enabled by computing, such as social
networks and media outlets. These interactions
allow issues to be examined using multiple
viewpoints from a diverse audience.

Social networks can play a large role in social and
political movements by allowing individuals to share
ideas and opinions about common issues while
engaging with those who have different opinions.
Computing provides a rich environment for discourse
but may result in people considering very limited
viewpoints from a limited audience.

Crosscutting Concepts: System Relationships; Human–
Computer Interaction

Connections Within Framework: 3–5.Data and
Analysis.Visualization and Transformation; 9–12.Data
and Analysis.Visualization and Transformation

BY THE END OF GRADE 5:
Ethical complications arise from the opportunities
provided by computing. The ease of sending and
receiving copies of media on the Internet, such as
video, photos, and music, creates the opportunity
for unauthorized use, such as online piracy, and
disregard of copyrights, such as lack of attribution.

Online piracy, the illegal copying of materials, is
facilitated by the ability to make identical-quality
copies of digital media with little effort. Other topics
related to copyright are plagiarism, fair use, and
properly citing online sources. Knowledge of specific
copyright laws is not an expectation at this level.

Crosscutting Concepts: System Relationships; Privacy
and Security

Connection Within Framework: 3–5.Networks and the
Internet.Cybersecurity

BY THE END OF GRADE 8:
There are tradeoffs between allowing information
to be public and keeping information private and
secure. People can be tricked into revealing
personal information when more public information
is available about them online.

Social engineering is based on tricking people into
breaking security procedures and can be thwarted by
being aware of various kinds of attacks, such as emails
with false information and phishing. Security attacks
often start with personal information that is publicly
available online. All users should be aware of the
personal information, especially financial information,
that is stored on the websites they use. Protecting
personal online information requires authentication
measures that can often make it harder for authorized
users to access information.

Crosscutting Concepts: Privacy and Security;
Communication and Coordination

Connection Within Framework: 6–8.Networks and the
Internet.Cybersecurity

Table continued on next page

Table continued from previous page

Concepts — Impacts of Computing	 28

BY THE END OF GRADE 12:
The design and use of computing technologies
and artifacts can improve, worsen, or maintain
inequitable access to information and opportunities.

While many people have direct access to computing
throughout their day, many others are still underserved
or simply do not have access. Some of these challeng-
es are related to the design of computing technolo-
gies, as in the case of technologies that are difficult for
senior citizens and people with physical disabilities to
use. Other equity deficits, such as minimal exposure to
computing, access to education, and training opportu-
nities, are related to larger, systemic problems in
society.

Crosscutting Concepts: Human–Computer Interaction;
System Relationships

Connection Within Framework: 9–12.Computing
Systems.Devices

BY THE END OF GRADE 12:
Many aspects of society, especially careers, have
been affected by the degree of communication
afforded by computing. The increased connectivity
between people in different cultures and in different
career fields has changed the nature and content of
many careers.

Careers have evolved, and new careers have emerged.
For example, social media managers take advantage of
social media platforms to guide the presence of a
product or company and increase interaction with their
audience. Global connectivity has also changed how
teams in different fields, such as computer science and
biology, work together. For example, the online
genetic database made available by the Human
Genome Project, the algorithms required to analyze
the data, and the ability for scientists around the world
to share information have accelerated the pace of
medical discoveries and led to the new field of
computational biology.

Crosscutting Concepts: System Relationships; Human–
Computer Interaction

Connection Within Framework: 9–12.Networks and
the Internet.Network Communication and Organization

BY THE END OF GRADE 12:
Laws govern many aspects of computing, such as
privacy, data, property, information, and identity.
These laws can have beneficial and harmful effects,
such as expediting or delaying advancements in
computing and protecting or infringing upon
people’s rights. International differences in laws and
ethics have implications for computing.

Legal issues in computing, such as those related to the
use of the Internet, cover many areas of law, reflect an
evolving technological field, and can involve tradeoffs.
For examples, laws that mandate the blocking of some
file-sharing websites may reduce online piracy but can
restrict the right to freedom of information. Firewalls
can be used to block harmful viruses and malware but
can also be used for media censorship. Access to
certain websites, like social networking sites, may vary
depending on a nation’s laws and may be blocked for
political purposes.

Crosscutting Concepts: System Relationships; Privacy
and Security; Abstraction

Connection Within Framework: 9–12.Data and
Analysis.Collection

Table continued from previous page

